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� Energy storage value increases with tighter carbon dioxide (CO2) emissions limits.
� The marginal value of storage declines as storage penetration increases.
� Large-scale deployment of available battery technologies requires cost reductions.
� Energy storage increases utilization of the cheapest low-CO2 resources.
� Longer-duration storage increases the share of wind more than solar photovoltaics.
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a b s t r a c t

Electrical energy storage could play an important role in decarbonizing the electricity sector by offering a
new, carbon-free source of operational flexibility, improving the utilization of generation assets, and
facilitating the integration of variable renewable energy sources. Yet, the future cost of energy storage
technologies is uncertain, and the value that they can bring to the system depends on multiple factors.
Moreover, the marginal value of storage diminishes as more energy storage capacity is deployed. To
explore the potential value of energy storage in deep decarbonization of the electricity sector, we assess
the impact of increasing levels of energy storage capacity on both power system operations and invest-
ments in generation capacity using a generation capacity expansion model with detailed unit commit-
ment constraints. In a case study of a system with load and renewable resource characteristics from
the U.S. state of Texas, we find that energy storage delivers value by increasing the cost-effective pene-
tration of renewable energy, reducing total investments in nuclear power and gas-fired peaking units,
and improving the utilization of all installed capacity. However, we find that the value delivered by
energy storage with a 2-hour storage capacity only exceeds current technology costs under strict emis-
sions limits, implying that substantial cost reductions in battery storage are needed to justify large-scale
deployment. In contrast, storage resources with a 10-hour storage capacity deliver value consistent with
the current cost of pumped hydroelectric storage. In general, while energy storage appears essential to
enable decarbonization strategies dependent on very high shares of wind and solar energy, storage is
not a requisite if a diverse mix of flexible, low-carbon power sources is employed, including flexible
nuclear power.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction electrify and decarbonize portions of the industry and transporta-
The electric power sector must play a central role in any effort
to mitigate the worst impacts of climate change. Most climate sta-
bilization scenarios envision the global power sector emitting very
low or zero carbon dioxide (CO2) by 2050 while also expanding to
tion sectors [1,2]. Electrical energy storage could play an important
role in the deep decarbonization of the power sector by offering a
new, carbon-free source of operational flexibility in the power sys-
tem, improving the utilization of generation assets, and facilitating
the integration of variable renewable energy sources (i.e., wind and
solar power) [3,4]. Most of the value of energy storage is accrued
from its ability to arbitrage wholesale prices during peak and
non-peak hours, thereby leveling out the system load [5–8], but
also from providing a carbon-free source of operating reserves
and flexibility [9–12] that might potentially defer investments in
other more expensive generation assets [13,14].
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Abbreviations and nomenclature

AGC average generation costs in USD/MWh
ASC average system costs in USD/MWh
CFIX
i annualized fixed cost of plant i in USD/kW-yr

CVAR
i variable cost of plant i in USD/MWh

CFSOLARh solar power capacity factor during hour h in per unit

CFWIND
h wind power capacity factor during hour h in per unit

CCGT combined cycle gas turbine
Dh total electricity demand during hour h in MWh
EC energy contribution of generation technology in %
ERCOT Electricity Reliability Council of Texas
GW gigawatts
GWh gigawatt-hours
h index for the hours simulated
H total number of hours simulated
i index for plants installed
IMRES Investment Model for Renewable Electricity Systems
kWh kilowatt-hours
LCOE levelized cost of energy in USD/MWh
Li-ion lithium ion
MVS marginal value of storage in USD/kWh
N number of generation units installed
nh amount of non-served energy in the system during hour

h in MW h

NLDC net load duration curve
OCGT open cycle gas turbine
pSOLAR solar power capacity installed in MWs
pWIND wind power capacity installed in MWs
PV photovoltaics
RC rate of renewable curtailment in %
S0 initial storage capacity in kWh
S1 final storage capacity in kWh
t index for generation technologies
T set of available generation technologies
TGC total generation cost in million of USD
TSC total system cost in million of USD
VOLL value of lost load in USD/MWh
xih output of unit i during hour h in MW

xSOLARh solar generation during hour h in MWs

xWIND
h wind generation during hour h in MWs
USD United States Dollars
y index for years
Y usable life of the asset in years
H weighing factor to scale up operating costs modeled to

one full year
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To date, many studies have examined the short-run impact of
energy storage on electric power system operations and economics
[5–9,14–18]. Some of these studies have focused on the role of
energy storage for integrating large amounts of variable renewable
energy generation in power system operations [9,15,16], and
others have assessed the impact of storage operation on carbon
emissions in conventional power systems [17,18]. Studies assess-
ing the short-run value of energy storage in different electricity
markets typically employ price-taker arbitrage models (i.e., models
that maximize the profits of the storage unit assuming that storage
does not impact electricity prices) [5–8,14], while others calculate
the short-run price equilibrium minimizing the system operating
costs but ignoring long-run capacity expansion decisions [11,12].

The long-run impact of energy storage on renewable energy uti-
lization is explored in [19]. However, this study does not account
for economic considerations and maximizes a multi-objective
function composed of renewable penetration minus storage and
backup requirements, instead of using the standard criterion of
maximizing social welfare—or, equivalently, minimizing total gen-
eration costs. Conversely, the long-run economic impact of storage
is analyzed in [13,20] based on cost minimization, but these stud-
ies do not include binding CO2 emissions limits for the electricity
sector. Other studies that consider the long-run market dynamics
under stringent CO2 emissions limits [21,22] do not consider
detailed unit-commitment constraints in the operation of the
plants, underestimating the flexibility value energy storage tech-
nologies bring to power systems.

In contrast to the existing literature discussed above, this paper
focuses explicitly on the total generation-system value of energy
storage.1 We explore in detail the impact of energy storage on
short-run power systems operations—accounting for detailed
unit-commitment decisions, the contribution of storage to system
flexibility and operating reserves, and the resulting influence on
1 By generation-system value we refer to the full value of generation, including
capital and operating costs for meeting energy and ancillary services needs, bu
without accounting for transmission or distribution costs, which are very much
contingent on the particular power system analyzed.

2 The CO2 emissions limit applies only to emissions from power plants during
operations and does not include emissions associated with construction, decommis-
sioning or other lifecycle related emissions.
t

wholesale electricity prices. We also consider the impact of energy
storage on long-run power plant investment decisions, in the con-
text of stringent CO2 emissions reduction goals. This work therefore
adds to the existing literature by providing a more complete assess-
ment of the economic value of energy storage through jointly captur-
ing both the short- and long-run interaction between storage,
renewable energy, and other zero-carbon electricity sources and
their relative contributions to meet demands for energy and operat-
ing reserves along with emissions reduction objectives. The novel
analytical framework used in this work can be applied to more accu-
rately value energy storage in indicative planning [23] for future
low-carbon power systems, where the CO2 emissions and flexibility
attributes of the different generation technologies play a critical role
in determining the minimum cost generation fleet that is opera-
tionally feasible and complies with a given carbon emissions limit.

In our analysis we made extensions to the Investment Model for
Renewable Electricity Systems (IMRES) [24], an advanced genera-
tion capacity expansion model that considers unit commitment
constraints for individual power plants, system-wide reliability
requirements, and individual power plant investment decisions.
The model selects the cost-minimizing set of investments in elec-
tricity generation capacity to reliably meet the electricity demand
in a future year, subject to a CO2 emissions limit.2 We model a
power system with electricity demand and wind and solar resource
data from the Electricity Reliability Council of Texas (ERCOT) grid. To
explore the impacts of storage on the long-run portfolio of power
generation capacity, we increase demand consistent with 2035 pro-
jections in Texas and employ the model in a ‘‘greenfield” configura-
tion—i.e., selecting the entire generation mix from scratch. Eligible
technologies include pulverized coal, combined cycle gas turbines
(CCGTs), open cycle gas turbines (OCGTs), wind turbines, solar pho-
tovoltaics (PV), and nuclear power. The nuclear power plants are
modeled as capable of flexible operation consistent with reactors
in France, Germany and other locations [25–27] as well as modern
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reactor capabilities [28,29]. We model this experimental power sys-
tem assuming no transmission network constraints and imposing
both increasing levels of energy storage capacity and increasingly
stringent limits on the average CO2 emissions rate of the electricity
system. Specifically, we model 0–30 gigawatts (GW) of energy stor-
age, representing approximately 0–30% of the system’s peak
demand, and emissions limits of 200–50 metric tons of CO2 per
gigawatt-hour (tCO2/GWh), approximately 60–90% below prevailing
2013 emissions rates in the United States (489 tCO2/GWh) [30] or
the European Union EU28 (337 tCO2/GWh) [30].

The contributions of this paper can be summarized as follows:
(1) We present a comprehensive analytical framework for assess-
ment of the full generation-system value of energy storage tech-
nologies in long-run economic equilibrium, accounting for
detailed, short-term operational constraints as well as CO2 emis-
sions goals. The novel analytical framework allows for a more
accurate assessment of energy storage benefits compared to what
is found in the existing literature. (2) We conduct a detailed case
study of the role of energy storage in a future power system based
on ERCOT data and with increasingly stringent CO2 emissions tar-
gets. We find that the value of energy storage increases with tigh-
ter emissions targets. At the same time, the marginal value of
storage declines significantly as storage capacity increases and
substantial cost reductions are likely needed to economically jus-
tify large-scale deployment of most storage technologies.

The paper is organized as follows: Section 2 introduces the
methodological approach and the experimental design used in
the analysis. Section 3 presents the economic and technical results
under three different hypothetical conditions, each of which is
exposed to increasingly stringent emissions limits: a power system
without energy storage and a diverse range of generation
resources, a power system with energy storage and the same gen-
eration resources, and a power system with storage that relies
exclusively on renewable energy technologies to reduce carbon
emissions. Sections 4 and 5 present respectively the discussion
and the conclusions derived from the analysis.
2. Methods

2.1. Demand, renewables and generation technology cost data sets

This study models an experimental electricity system with elec-
tricity demand and wind and solar resource data from the Electric-
ity Reliability Council of Texas (ERCOT) grid. The selection of a
‘Texas-like’ test system was motivated by the relative lack of
hydroelectric resources in Texas and weak interconnection with
other neighboring power systems of the ERCOT interconnection,
which allows a clear interpretation of the results. To project elec-
tricity demand in ERCOT in 2035, we increased historical 2014
hourly electricity demand for the ERCOT grid at an annual growth
rate of 1.86% [31], resulting in a system peak load of 97.1 GW.
Hourly wind resource availability was also obtained from 2014
ERCOT historical data, with an average wind availability of 35.7%.
Hourly solar PV availability was estimated by aggregating data
from NREL’s PV Watts Model [32] for seven geographically diversi-
fied locations in Texas, assuming single-axis tracking systems
located in Mineral Wells, Lubbock, Midland, and Marfa and rooftop
panels in San Antonio, Austin, and Houston. The resulting average
availability of solar PV was found to be 19.9%.

Other generation technologies considered in the study are dual-
unit nuclear pressurized water reactors, dual-unit advanced pul-
verized coal steam generators, CCGTs, and advanced OCGTs. The
capital cost of each generation technology was collected from the
U.S. Energy Information Administration’s Annual Energy Outlook
2014 [31] and the U.S. Department of Energy ‘‘Wind Vision” [33]
and ‘‘SunShot Vision” Reports [34]. Overnight capital costs were
annualized using a 10% discount rate and 30 and 40 years of
expected life for renewable and thermal technologies respectively.
A summary of the cost parameters for all generating technologies
in the study is provided in Table A.1 [55–57].

2.2. Experimental design

The experiments conducted in this study determine the optimal
portfolio of thermal and renewable generation capacity necessary
to supply the expected hourly electricity demand in 2035 at min-
imum cost for different exogenously-specified levels of installed
energy storage capacity, while accounting for the chronological
variability of demand and renewable resources, the system
requirements for operating reserves, as well as the operational lim-
its of the installed generating units. With the exception of a refer-
ence baseline scenario, each of the analyzed scenarios is subject to
a mass-based CO2 limit, representing future possible decarboniza-
tion targets. This CO2 limit is implemented as a cap on the total
amount of CO2 emissions produced by electricity generation on a
yearly basis. For easier comparison with the emissions produced
in other power systems, we normalize the mass-based limit by
the total energy generated and present the emissions limit in the
plots as an emissions rate expressed as tons of CO2 emissions per
GWh generated.

The experimental setting consists of 35 cases resulting from the
possible combinations of seven scenarios of installed energy stor-
age capacity and five scenarios of CO2 emissions limits. Energy
storage scenarios range from 0 to 30 GW of installed capacity (in
10 GW increments) and include two generic energy storage tech-
nologies, each of which is represented by a different energy to
power ratio: 10:1 (or 10 h of energy storage at maximum hourly
discharge) and 2:1 (or 2 h of storage). There is a wide range of
energy storage technologies commercially available and in devel-
opment, each with different configurations of power and energy
capacities, round-trip efficiencies, cycle life, and other operating
parameters [35–37]. We selected these two generic storage tech-
nologies to enable evaluation of the value of different durations
of storage capacity. The 2-hour (2-h) generic storage technology
can be considered broadly consistent with commercially available
Lithium-ion (Li-ion) battery systems, which are typically installed
with energy to power ratios between 0.25:1 and 5:1 [35]. The
10-hour (10-h) storage technology is broadly consistent with
pumped hydroelectric storage systems, which typically were
designed for a daily operating cycle with energy to power ratios
ranging from 8:1 to 16:1 [35], although there are examples of
pumped storage hydro facilities with more than 20 h of operating
storage as well as storage duration of as little as four hours [37].
To facilitate comparison and evaluation of the value of shorter or
longer-duration storage capabilities, both generic technologies
are assumed to have a round-trip efficiency of 80%. This is a mid-
range value for both pumped-hydro electric storage systems,
which have round-trip efficiencies ranging from 70% to 85% effi-
ciency [35,37] and Li-ion systems, which typically range from
73% to 90% (including AC/DC and DC/AC power conversion losses)
[35]. While these two generic technologies allow for broad com-
parison of relatively short and long-duration storage resources,
care should be taken in using the results herein to derive the value
of specific storage technologies or installations which may have
different characteristics, such as different round-trip efficiency or
storage duration.

CO2 emissions limits span a range between 200 t/GWh and
50 t/GWh in 50 ton increments, as well as a baseline reference
scenario with unconstrained emissions. Note that these limits
represent substantial reductions in CO2 emissions relative to
current emissions rates in Texas, which stand at approximately
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550 t/GWh. Emissions limit scenarios thus correspond to roughly
63–91 percent declines relative to current emissions rates.

In addition to these core scenarios, we also re-analyzed the
100 t/GWh emissions limit under each of the seven storage scenar-
ios after excluding nuclear power as an eligible generation technol-
ogy. These scenarios explore the ability of variable renewable
energy resources (wind and solar) to meet stringent emissions lim-
its without additional zero-carbon generation resources and the
value of storage in such cases.

2.3. Generation capacity expansion model

This study employs the generation capacity expansion model
IMRES [38] to determine simultaneously the optimal ‘‘greenfield”
level of investment in generation capacity—i.e., assuming that
there is no existing generating capacity—in each of the cases stud-
ied and the optimal operation of these generation investments.
IMRES is implemented as a mixed-integer linear programming
model using the commercial optimization solver CPLEX. The model
selects the combination of available thermal power plants and
renewable generation that can supply electricity demand at mini-
mum cost, while complying with operational reliability constraints
and the CO2 emission limit imposed on the system. The optimiza-
tion is done over four representative weeks and the operational
results and associated costs are scaled up to approximate annual
values.

Analogously to classic static generation capacity expansion
models [39], the goal of IMRES is to minimize the total generation
cost in the system over one year. These costs can be divided into
fixed costs (which include the annuity corresponding to the amor-
tization of the capital cost at a 10% weighted average cost of capital
and fixed operation and maintenance cost), variable costs (which
include fuel consumption and variable operation and maintenance
costs), startup costs for thermal generators (which include the fuel
cost of starting up the turbine and the degradation of the turbine
from starting up and shutting down), and the cost of non-served
energy. The objective function in IMRES is subject to a set of con-
straints that reflect the operational limits of the different genera-
tors in the system (i.e., minimum up and down time, ramping
limits, and minimum stable output of the generators). The values
of the technical parameters used are included in Table A.2.

Moreover, IMRES requires the resulting generation mix to pro-
vide an amount of operating reserves for the system, i.e., available
capacity that can be used at any time to balance the system under
uncertain events such as the loss of a generator or forecasting
errors in demand, wind or solar generation. The operating reserve
requirements for the system are based on the largest single gener-
ator in the system, the electricity demand in each hour, and the
wind and solar energy generation in each hour. Note that the
reserve requirements are determined endogenously in the model
and increase with the level of installed wind and solar capacity.
Details for the formulation of these constraints can be found in
[38]. Combining a capacity expansion formulation with detailed
operational constraints and operating reserve requirements
enables our study to reflect the impact of the variability and uncer-
tainty of renewable resources on the operation of thermal units,
operating reserve requirements, and on capacity expansion deci-
sions, and ultimately the value of energy storage in decarbonizing
the electricity sector. These aspects are critical in the analysis of
low carbon emissions power systems [13,24].

In these experiments, we exogenously specify the capacity of
energy storage, and then IMRES optimally determines the opera-
tion of storage capacity and accounts for the interaction between
storage and other operating and capacity expansion decisions.
IMRES treats this storage capacity as a single energy reservoir that
can store energy within the power and energy limits specified for
each of the analyzed scenarios. Energy storage is also exposed to
a round-trip efficiency factor (80%) that reflects the energy losses
in the process. Note that since the energy storage capacity in each
experiment is an exogenous input, the investment cost of energy
storage is not reflected in the objective function of IMRES, which
only reflects total generation costs. We however add the cost of
storage to the cost of generation in an additional metric represent-
ing the total ‘system cost’ of supplying electricity. Later in the
paper (in Section 3.5) we take a different perspective and present
cost-benefit results of deploying increasing levels of energy stor-
age. These results focus on the value provided by energy storage
to the generation system—measured as reduction in generation
costs—and compare this to current and future predicted costs for
Li-ion and pumped-storage hydro technologies.

2.4. Time-domain representation

The variability and uncertainty of renewable resources require
generation expansion models that use as input demand and
renewable resource data with at least hourly time resolution in
order to guarantee the technical feasibility of the solution. How-
ever, accounting for the hourly resolution of demand and renew-
able resources over a time span of one year increases
dramatically the dimensionality of the capacity expansion prob-
lem. Employing a mixed-integer model to capture detailed invest-
ment, unit commitment, and operational constraints further
renders the problem computationally intractable for realistic size
power systems when using state-of-the-art commercial solvers
like CPLEX.

This analysis therefore applies a dimensionality reduction tech-
nique based on selecting a set of representative weeks that simul-
taneously reflect the annual variability of demand, the wind
resource, the solar resource and the correlation between them.
Choosing contiguous weeks instead of days, load blocks, or other
time intervals ensures that the intra-week variability of wind and
solar resources, potentially including multiple consecutive days
with low or high resource availability, is reflected in the data used
by the model. Using selected weeks to represent a full year is a
common approach in generation expansion planning with renew-
able resources—e.g., [40] and [41]. The robust week selection pro-
cess used in this analysis extends the method described in [42],
selecting the weeks that most closely represent the full annual
net load duration curve (NLDC) as well as the inter-temporal vari-
ability of the net load. The error of approximating the NLDC is cap-
tured by an ‘energy’ metric that reflects the root-mean-square
error of the difference between the real NLDC and the approxima-
tion. The inter-temporal variability of the net load is captured
through a ‘cycled power’ metric that quantifies the height of all
the peaks in the net load time series, which is taken as a proxy
to the power that must be ramped-up or down throughout the
year. Such ramping events are the key driver of generator startup
decisions and system flexibility requirements—e.g., ramp rates of
committed units. To allow for endogenous determination of
renewable energy capacity decisions, we applied a robust selection
technique in this study, such that the weeks selected are the ones
that minimize the maximum error across the ‘energy error’ and
‘cycled power error’ metrics and across a range of potential renew-
able expansion levels. As Fig. 1 illustrates with the two most
extreme examples in terms of renewable capacity deployed, this
feature ensures the approximate NLDC closely matches the full
annual net load duration curve under any resulting renewable
energy capacity ultimately selected by the model. In Fig. 1, the
NLDC is determined by the original time series for load and the
amount of renewable generation capacity, which in turn is a func-
tion of the carbon constraint. The four-week approximation is
determined by the same renewable capacity as the original NLDC,



Fig. 1. Four-week approximation and full annual net load duration curve under
renewable capacity levels corresponding to lowest and highest renewable invest-
ment levels across all ‘‘no storage” cases. The two four-week approximations
represented are built using the same representative weeks (weeks #12, #19, #27
and #37).

Fig. 3. Energy contribution and average cost of electricity generation under various
carbon emissions limits, no storage cases.
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but using only the set of four representative weeks selected. Fig. 2
presents the variability of load and wind and solar resources for the
four weeks selected by this algorithm. Load and solar generation
both have a distinct daily cycle, whereas the wind generation fol-
lows a more random pattern.

3. Results

3.1. Reducing the carbon footprint of electricity without energy storage

Fig. 3 reports the optimal portfolio of electricity generation
under the increasingly stringent emissions limits as well as the
average generation cost in the absence of energy storage. Average
generation cost (AGC) is defined as the quotient between the total
annual generation costs (TGC) and the total annual load:

AGC ¼ TGC

H �PH
h¼1Dh

½USD=MWh�; ð1Þ
Fig. 2. Hourly time series of electricity demand and wind and solar resource quality for
(weeks #12, #19, #27 and #37).
where h is the index for the hours in the four weeks selected; H is
the total number of hours considered in the simulation (H = 672
with a four-week approximation); H ¼ 8760=H is the weighing fac-
tor used to scale up the operating cost of the four-weeks modeled
and make it equivalent to full-year operating cost; and Dh is the
total electricity demand during hour h in MWh.

TGC is defined as the sum of annualized generation investment
costs, fixed and variable O&M, fuel costs, start-up costs and the
cost of non-served energy divided by the total annual load:

TGC¼
XN

i¼1

ð1000 �CFIX
i �PMAX

i þH �
XH

h¼1

CVAR
i �xihÞþH �VOLL �

XH

h¼1

nh ½USD�;

ð2Þ

where i is the index for the plants installed in the system; N is the
total number of plants installed in the system; CFIX

i is the annualized

fixed cost of plant i in USD/kW-yr; PMAX
i is the maximum power out-

put of plant i in MW; CVAR
i is the variable cost of plant i in USD/

MWh; xih is the energy output of plant i during hour h in MWh;
VOLL is the value of lost load in USD/MWh; and nh is the amount
of non-served energy during hour h in MWh.
the four weeks selected by the week selection algorithm and modeled in this study
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Energy contribution of an individual technology t 2 T (ECt) is
defined as the average contribution of generating units of technol-
ogy t to supplying the total electricity demand over the total num-
ber of hours considered in the simulation:

ECt ¼ 100 �
PH

h¼1

P
i2txihPH

h¼1Dh

8t 2 T ½%�; ð3Þ

where T is the set of all available technologies in the system:
T = {nuclear, coal, CCGT, OCGT, wind, solar}.

Total generation costs rise 9% under a 100 tCO2/GWh emissions
rate limit and 15% under a 50 tCO2/GWh limit, compared to the ref-
erence scenario with no emissions limit. These results are context-
specific, and several factors contribute to this relatively modest
increase. First, we assume solar, wind, and nuclear each achieve
cost reduction targets outlined by industry and the U.S. Depart-
ment of Energy [33,34], as summarized in Table A1. Assumed cap-
ital costs correspond to a roughly 36% decline in cost per kilowatt
installed for solar and a 25% decline for wind relative to costs pre-
vailing in the U.S. in 2014 [43,44] and an 8% decline in overnight
capital costs for nuclear relative to the estimated cost of Vogtle
Units 3 and 4 currently under construction in Georgia [45]. Second,
Texas possesses relatively abundant renewable energy resources
(i.e., historical average availability for wind and solar in 2014 is
35.7% and 19.9% respectively) [46]. The total generation cost would
increase with higher technology costs and in locations with poorer
renewable resources (and vice versa). At the same time, we assume
relatively modest natural gas prices consistent with current North
American market forecasts [31]. If higher gas prices prevail, the
incremental cost of complying with emissions limits would be
smaller because the fuel savings generated when low-carbon
resources displace gas-fueled plants would be more valuable.
Finally, by employing a greenfield capacity mix, we assume that
all generation assets must be built from scratch. Actual costs of
compliance with emissions reduction limits could be more costly
if existing generation assets must be retired before the end of their
useful life, while costs could be lower if existing low-carbon assets
can be utilized to meet emissions limits.

As Fig. 3 illustrates, in the absence of energy storage, wind and
solar power reach a maximum penetration level under the 200 and
150 tCO2/GWh limits, respectively, but each resource’s contribu-
tion to the low-carbon power mix actually declines as emissions
limits tighten further. Wind’s contribution to annual energy sup-
plies peaks at 30.3% and 30.0% under the 200 and 150 tCO2/GWh
emissions limit cases, respectively, and falls to 23.4% and 12.2%
under the 100 and 50 tCO2/GWh cases. Solar likewise reaches a
high of 9.3% under the 150 tCO2/GWh case and declines to 8.9%
and 7.0% under the tighter 100 and 50 tCO2/GWh limits. While
wind and solar energy are assumed to have lower total cost per
unit of electricity delivered than nuclear given the cost and
resource quality assumptions used in this study,3 the marginal
value of these variable renewable resources declines at higher pen-
etrations due to four factors. First, as wind and solar deployment
increase, the energy they generate displaces plants with progres-
sively lower variable costs, delivering less value to the system [47].
Second, due to their resource variability, wind and solar contribute
only modestly to meeting the peak electricity demand, and their
marginal contribution declines as they increase market share [48–
50]. Third, wind and solar curtailment rises at higher penetration
levels, reducing the effective capacity factor of these resources
[51]. Finally, more wind and solar increases demand for operating
3 At a capacity factor of 35.7% without curtailment, wind has a levelized cost of
energy (LCOE) of USD 60.31/MWh. With a capacity factor of 19.9% without
curtailment, solar has an LCOE of USD 85.47. And with an annual capacity factor
ranging from 91–99% in the model results for nuclear across cases, nuclear has an
LCOE of USD 90.14–96.93.
reserves, i.e. flexible standby capacity needed to respond to variabil-
ity and uncertainty in the system [52]. As a result, nuclear energy
plays an increasingly important role as emissions limits tighten.
Nuclear’s share of annual energy generation rises from 7.8% and
18.9% under the 200 and 150 tCO2/GWh emissions limits, respec-
tively, to 40.5% under 100 tCO2/GWh and 67.6% under the 50
tCO2/GWh limit. By operating in a flexible manner [25–29], nuclear
units provide a flexible base of zero-carbon energy supplies, provid-
ing operating reserves and helping minimize curtailment of wind
and solar resources.
3.2. The impact of energy storage on electricity mix and cost

The addition of energy storage to the system substantially
changes the economically optimal low-carbon portfolio of generat-
ing resources and the cost of supplying electricity, as illustrated in
Figs. 4 and 5 below. We model two different energy storage capac-
ities: a 2-h storage capacity, broadly consistent with Li-ion battery
systems (left panel), and a 10-h storage capacity (right panel), con-
sistent with pumped hydroelectric storage [35,36], as discussed in
Section 2.2.

It is important to note that the cost of storage itself is not
included in the average generation cost of electricity metric pre-
sented thus far. We therefore introduce a new metric accounting
for the total system cost (TSC) of supplying electricity for the
year—including the cost of storage—defined as the sum of the
TGC and the annuity corresponding to the cost of the storage capac-
ity exogenously added to the system:

TSC ¼ TGC þ cost of storage ðannuityÞ; ½USD� ð4Þ
Analogously to the AGC, we define the average system cost (ASC)

as the quotient between the total system costs (TSC) and the total
annual load:

ASC ¼ TSC

H �PH
h¼1Dh

; ½USD=MWh�; ð5Þ

Under perfect competition, the ASC would be equivalent to the
average price of electricity that consumers would ultimately have to
pay—excluding the cost of transmission and distribution.

The future costs of energy storage systems are uncertain, partic-
ularly for emerging technologies like batteries. To facilitate com-
parison with current and future forecasted capital costs of Li-ion
storage (764 and 536 USD/kWh respectively4) and maximum and
minimum capital cost estimates of pumped-hydroelectric storage
(250 and 100 USD/kWh respectively5), we report two average sys-
tem cost estimates for each storage duration (Figs. 4 and 5).
Table A.3 in Appendix A presents a detailed calculation of the storage
cost annuity used to derive the average system cost (ASC).

Energy storage helps reduce average electricity generation costs
primarily by increasing the utilization of the least-expensive low-
carbon resource, which in our analysis are wind and solar. How-
ever, under a carbon emissions limit of 100 tCO2/GWh, average
system costs inclusive of energy storage costs (Figs. 4 and 5) actu-
ally increase, not decrease, in most cases. To reduce total system
costs, 2-h storage costs must improve relative to today’s Li-ion
costs, and 10-h storage system costs must fall along the low end
of current pumped storage hydro costs. We discuss the economic
value of storage in more detail for all other carbon emissions limits
studied and present implications for storage technology develop-
ment cost targets in Section 3.5.
4 These values are consistent with the cost assumptions presented in the cost-
benefit results in Section 3.5 and the cost annuity calculation in Table A.3.

5 These values are consistent with the cost assumptions presented in the cost-
benefit results in Section 3.5 and the cost annuity calculation in Table A.3.



Fig. 4. Impact of energy storage on energy contribution, average generation cost (excluding the cost of energy storage, in black) and average system cost (including the cost of
2-h and 10-h storage, in red and blue respectively) under emissions limit of 100 tCO2/GWh. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 5. Impact of energy storage on average system cost under emissions limit of
100 tCO2/GWh. With perfect competition the average system cost could be
interpreted as the average electricity price.

6 At an average capacity factor of 73.5% in the unconstrained emissions case, CCGTs
have a levelized cost of USD 74.51/MWh, as compared to 60.31/MWh for wind.
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Given this study’s cost assumptions (see Section 3.1), storage
reduces curtailment of wind and solar increasing their utilization
and attractiveness at higher penetration levels. Increasing storage
capacity thus increases the share of variable renewable resources
for a given emissions limit and correspondingly reduces the contri-
bution from nuclear. Nuclear’s share under the 100 tCO2/GWh limit
is approximately halved, for example, from 40.5% without storage
to a low of 21.6% with 30 GW of 2-h duration storage and 17.9%
with 30 GW of 10-h duration storage, respectively (Fig. 4). Under
the same emissions limit, wind and solar’s combined contribution
rises, meanwhile, from 32.3% without storage to a high of 50.7%
and 54.7% with 30 GW of 2-h and 10-h storage, respectively.

In addition, Fig. 4 shows that the duration of energy storage
capacity has a very different impact on the optimal share of wind
and solar. For an equal storage power capacity, a longer-duration
energy reservoir increases the share of wind power relative to
the shorter-duration storage scenarios, and vice versa. Under the
100 tCO2/GWh and 30 GW storage case, for example, wind and
solar make up 42.5% and 12.2% of total energy generation, respec-
tively, with 10-h storage and 35.5% and 15.2% respectively with the
shorter-duration 2-h storage. This difference is driven by the differ-
ent patterns of wind and solar variability and their correlation with
electricity demand, as illustrated in Figs. 6 and 7. While a 2-h bat-
tery is sufficient to store renewable energy production to meet the
afternoon peak in load as solar production falls off (Fig. 6), a longer-
duration storage option is better suited to shift wind energy pro-
duction overnight to supply daytime demand (Fig. 7).

Energy storage also competes directly with OCGTs to provide
operating reserves and meet peak power demands. As a result,
combustion turbine capacity declines steadily as energy storage
capacity increases. Under the 100 tCO2/GWh emissions limit, for
example, storage displaces OCGT capacity nearly one-for-one, with
OCGT capacity falling from 27.5 GW to 4.6 GW or 7.8 GW as stor-
age capacity increases from 0 to 30 GW with a 10-h or 2-h storage
duration, respectively. In contrast, installed capacity and utiliza-
tion of CCGTs are largely unaffected by the addition of energy stor-
age. While wind energy has a lower levelized cost of delivered
electricity than CCGTs in this study,6 once the marginal value of
wind falls sufficiently, the model essentially deploys and utilizes
CCGTs until the emissions limit is reached, before then turning to
more expensive zero carbon resources.

3.3. The impact of relying exclusively on renewables

Since some countries do not consider nuclear power as an
option for their future electricity mix, we performed an additional
analysis of the seven storage scenarios with the 100 tCO2/GWh
emissions limit after excluding nuclear power as an eligible
generation technology. First, we note that in the no storage case,
our model was unable to produce a feasible electricity portfolio
to comply with the 100 tCO2/GWh emissions limit. Without a
zero-carbon source of system flexibility, natural gas-fired units
are necessary to meet the operating reserve requirements com-
mensurate with high penetrations of wind and solar energy, and
these gas-fired units emit too much CO2 to meet the relatively



Fig. 6. Example of dispatch in week #27 under 100 tCO2/GWh emissions limit and with 30 GW of storage with two-hour storage capacity.

Fig. 7. Example of dispatch in week #27 under 100 tCO2/GWh emissions limit and with 30 GW of storage with ten-hour storage capacity.
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strict emissions limit. In effect, a sufficient level of low-carbon
system flexibility (be it storage, demand response, hydropower,
or some other resource) is necessary to meet technical power
system operational requirements under strict emissions limits if
variable renewable resources are the chief means of achieving
decarbonization.

The model produced feasible results for each of the cases
including energy storage. Fig. 8 shows the economically optimal
low-carbon portfolio of generating resources for these cases, as
well as the average generation and system costs achieved in the
different storage capacity scenarios (see also Fig. 9 for a more
detailed comparison of average system costs). As above, the energy
contribution from CCGTs remains almost constant as its contribu-
tion is effectively limited by the carbon emissions constraint
imposed on the system. The optimal share of wind and solar power
for each of the two energy storage technology cases studied—2-h
and 10-h storage—is also approximately unchanged, with wind
supplying roughly 50% and solar 20% of annual electricity in each
case. While the total amount of energy storage capacity improves
renewable utilization rates, it barely changes their relative
importance in the energy generation mix. However, by reducing
curtailment (see Fig. 10) and improving the utilization of wind
and solar resources, increasing levels of energy storage reduce
the total installed capacity of wind and solar required, driving
down overall generation costs. As Figs. 8 and 9 illustrate, cost
reductions due to storage saturate at 20 GW for the 2-h storage
technology, whereas there is also a significant incremental cost
reduction at the 30 GW level for 10-h storage.

Comparing the two cases with and without nuclear (Figs. 4 and
8, respectively) demonstrates that excluding nuclear power from
the low-carbon power mix increases overall system costs (given
the costs assumptions employed herein). With 10 GW of energy
storage installed, including nuclear reduces total generation costs
by 8.6% under the 10-h storage technology case and 6.0% under
the 2-h technology case. This finding indicates that renewable
energy and flexible nuclear power are likely to coexist in an eco-
nomically optimal low-carbon electricity system, even with large
amounts of energy storage. Nevertheless, if storage becomes suffi-
ciently affordable, the role of wind and solar expands and the rel-
ative importance of nuclear power declines.



Fig. 8. Impact of energy storage on energy contribution and average generation cost (excluding the cost of energy storage) and average system cost (including the cost of 2-h
and 10-h storage, in red and blue respectively) under emissions limit of 100 tCO2/GWh and no availability of flexible nuclear.

Fig. 9. Impact of energy storage on average system cost under emissions limit of
100 tCO2/GWh and no availability of flexible nuclear. With perfect competition the
average system cost could be interpreted as the average electricity price.

Fig. 10. Renewable curtailment as a percentage of the total renewable energy
output for the two energy storage technology cases –2 h and 10 h storage– and a
100 tCO2/GWh carbon emissions limit. Note that for the scenario of 0 GW of storage
capacity installed, the solution with no flexible nuclear is infeasible and no results
are shown in the figure.

376 F.J. de Sisternes et al. / Applied Energy 175 (2016) 368–379
3.4. The impact of energy storage on renewable curtailment

Oftentimes it is not technically feasible or economically effi-
cient to utilize all renewable energy available in power systems
with a large share of renewable generation, and a fraction of this
renewable energy available needs to be curtailed. Hourly curtail-
ment decisions are endogenously determined by the model consis-
tent with its objective function and technical constraints. The total
renewable energy curtailed over the course of one year can be
expressed in terms of the total renewable energy available with
the rate of curtailment, which is given by the following expression:

RC ¼ 100 �
PH

h¼1ðpWIND � CFWIND
h þ pSOLAR � CFSOLAR

h � xWIND
h � xSOLARh Þ

PH
h¼1ðpWIND � CFWIND

h þ pSOLAR � CFSOLAR
h Þ ½%�

ð6Þ

where pWIND is the wind power capacity installed in MWs; pSOLAR is
the solar capacity installed in MWs; CFWIND

h is the capacity factor
of wind—or wind availability—during hour h in per unit; CFSOLAR
h is

the capacity factor of solar—or solar availability—during hour h in
per unit; xWIND

h is the wind generation during hour h in MWs; and
xSOLARh is the solar generation during hour h in MWs.

The importance of energy storage is magnified in a scenario pre-
dominately reliant on variable renewables to decarbonize the
power system. With the addition of sufficient energy storage, it
becomes technically feasible to meet a 100 tCO2/GWh limit with
only wind, solar, and gas-fired plants, as discussed above. However,
up to 13.2% of wind and solar generation is wasted due to curtail-
ment if only 10 GW of energy storage is installed (Fig. 10). Renew-
able curtailment declines as storage capacity increases, but it is
still a substantial 4–8% at 30 GW of storage, depending on the stor-
age duration. Fig. 10 also shows that a diversified portfolio that
includes flexible nuclear energy would reduce renewable curtail-
ment to levels below 2.4% under a 100 tCO2/GWh emissions limit.
The reductions in renewable curtailments lower the costs of meet-
ing this emissions limit. Note also that the evolution of renewable
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curtailment with the amount of energy storage capacity deployed
does not fall monotonically in the case that includes flexible
nuclear power in the mix. This non-monotonicity is due to the fact
that thermal power investments in general and nuclear power
units in particular are discrete and ‘lumpy’ (e.g., investments in
new dual-reactor nuclear plants are made in 2230 MW incre-
ments), which might create curtailment ‘jumps’ whenever nuclear
capacity is substituted by renewables in the solution.
3.5. The economic value of energy storage

Figs. 11 and 12 illustrate the value for each 10 GW increment of
additional storage capacity—defined as the avoided electricity gen-
eration investment and operations cost—for each of the two stor-
age technology options analyzed (2-h and 10-h of storage). To
enable comparison to cost projections for energy storage technolo-
gies, we convert the annual avoided generation costs to net present
value avoided costs per kWh of energy storage capacity installed.
Fig. 11. Cost-benefit of energy storage: system value of 2-h energy storage capacity fo
battery systems for comparison. Different markers reflect different storage penetration

Emissions Limit in tons of CO2 per GWh and Expec

Fig. 12. Cost-benefit of energy storage: system value of 10-h energy storage capacity for d
of pumped-hydro storage systems (�30 year life) for comparison. Different markers refle
asset lifespan.
Results on the marginal value of storage (MVS) are sensitive to
the assumed usable lifetime of the storage asset (T) in years, so
we present results for a 10, 20, and 30 year usable life, applying
a 10% discount rate in each case. The MVS between an initial stor-
age capacity S0 and a final storage capacity S1 is therefore the net
present value of the difference in total generation costs (TGC in
USD) between the case with S0 kWh of energy storage and the case
with S1 kWh of energy storage, divided by the difference in storage
capacity between S1 and S0:

MVSS0�S1 ¼
XY

y¼1

ðTGCs0 � TGCs1Þ=ðS1� S0Þ
ð1þ 10%Þ y ½USD=kWh�: ð7Þ

where y is the index for years, and Y is the usable life of the asset in
years.

Fig. 11 presents results for the 2-h storage technology cases,
representative for many electrochemical battery storage technolo-
gies. Assuming a 10-year asset life, the first 10 GW of 2-h duration
storage avoids USD 286–572 in generation costs per installed kWh
r different carbon emissions goals and current and potential future cost for Li-ion
levels, and different colors reflect different expected asset lifespan.

ted Life in years

ifferent carbon emissions goals and minimum and maximum current estimated cost
ct different storage penetration levels, and different colors reflect different expected
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of storage capacity (depending on emissions limit). The marginal
value of storage declines rapidly, however, falling to USD 193–
367 per kWh at 20 GW installed capacity and USD 40–208 per
kWh at 30 GW. If the storage asset lasts for 20 or 30 years, the mar-
ginal value increases 39% and 53% respectively.

For comparison, current best-in-class utility-scale Li-ion storage
systems cost approximately USD 764/kWh installed, including
approximately USD 250/kWh for the battery pack and USD 514/
kWh for balance of system (power electronics, racking, connection
to the grid, etc.) [35,53]. Expected to last for only 10 years (3–4000
cycles with an average cycling pattern of one full cycle per day),
these systems remain too costly in comparison to estimated
avoided generation costs (Fig. 11) regardless of the stringency of
emissions limits.

Looking ahead, the U.S. Department of Energy targets a capital
cost of USD 125/kWh for Li-ion battery packs by 2022 [54]. If a
20% reduction in balance of system costs can also be achieved, that
would bring total installed system costs to roughly USD 536/kWh.
Combined with a usable life of 20 years (e.g. >7000 cycles), Fig. 11
indicates that such systems would deliver sufficient value under
emissions limits to justify deployment at up to 10–20 GW scale,
depending on the emissions limit. Assuming a 20-year storage
asset life, the net present value of generation costs avoided by
the first 10 GW of 2-h storage technology installed ranges from
USD 642/kWh of installed storage capacity under the 200 tCO2/
GWh emissions limit to USD 793/kWh installed under the 50
tCO2/GWh limit, exceeding the estimated cost of this improved
battery system by roughly 20–48%. Much more dramatic cost
reductions (i.e., an 80–85% reduction from current system costs)
would be necessary to justify storage deployment at 30 GW or
greater scale based on avoided generation costs.

Fig. 12 presents the estimated value of energy storage for the
different 10-h energy storage cases. Assuming a 30-year financial
life of the asset, results show that the first 10 GW of 10-h duration
storage avoids USD 103–257 per installed kWh (depending on
emissions limit) in generation costs. The marginal value of storage
declines to USD 80–160/kWh at 20 GW installed capacity and USD
91–112/kWh at 30 GW.7

For comparison, we present the maximum and minimum esti-
mated costs of pumped-hydro storage (USD 100–250/kWh
installed) as a reference against the value calculated for the 10-h
generic storage technology, as pumped-hydro storage systems
could offer storage capabilities of this duration [35,36]. As Fig. 12
illustrates, 10-h energy storage capacity systems with 30 years of
expected life provide sufficient value to justify deployment under
the lower range of current estimates of pumped-hydro storage sys-
tem costs. Yet, the availability of pumped-hydro storage depends
very much on the geographical characteristics of the targeted loca-
tion, which certainly limit their deployment potential. Commer-
cially available flow battery technologies, which may offer
similar durations of energy storage, remain nascent and have dif-
ferent characteristics that may not be directly comparable to the
values presented above.
4. Discussion

Energy storage has been presented in many studies as a neces-
sary element to significantly reduce the carbon footprint of the
electricity sector. Indeed, our results indicate that meeting strict
emissions reduction targets with variable renewable energy
7 Note that the small and non-monotonic increment in marginal value between
20 GW and 30 GW compared to the value between 10 GW and 20 GW is created by
the lumpiness of the generation investment decisions, as the model decides on
investments in individual plants, some of which are quite large (i.e. 2,230 MW dual
reactor nuclear plant).
sources alone may be impossible without scalable energy storage
or another zero-carbon source of operating flexibility. If flexible
nuclear is precluded from our set of eligible technologies, our
model cannot produce a feasible electricity portfolio to comply
with a 100 tCO2/GWh or tighter limit without including energy
storage. In contrast, if dispatchable nuclear power plants are
included in the eligible set of resources, emissions limits as low
as 50 tCO2/GWh are achieved at modest incremental cost even
without storage. In short, our results indicate that energy storage
may be essential to enable climate mitigation strategies dependent
exclusively on very high shares of wind or solar energy, but storage
is not a requisite if a more diverse mix of flexible, low-carbon
power sources is considered.

Our results also show that if storage technologies meet future
technology performance and cost goals (i.e. extended cycle life
and cost reductions), electrochemical energy storage could become
a cost-effective contributor to very low-carbon power systems
(Fig. 6). At the same time, the diminishing marginal value of energy
storage means that the economically optimal penetration level of
storage will be limited unless costs continue to decline well
beyond current targets or in specific locations where storage sys-
tems deliver significant additional value to electricity systems
not considered in this paper, such as avoidance of transmission
or distribution costs.
5. Conclusion

The results presented in this work help inform the current
debate about the value and role of energy storage in decarbonizing
electricity systems. Using a capacity expansion model with
detailed unit commitment constraints we quantify the value of dif-
ferent capacity levels of 2-h and 10-h energy storage under strin-
gent carbon emissions limits.

We first show that there is no silver bullet to decarbonize the
electricity sector: the least-cost generation mix includes a diverse
mix of resources and wind, solar, and flexible nuclear technologies
co-exist in the optimal low-carbon generation portfolio, regardless
of the level of energy storage. Under an emissions limit of 100
tCO2/GWh, nuclear’s contribution to total energy supply ranges
from 18–40%, depending on the amount of energy storage
installed, while solar and wind shares are in the 9–15% and 23–
43% ranges, respectively. Likewise, flexible nuclear contributes
52–68% under a tighter 50 tCO2/GWh limit while solar contributes
7–14% and wind 12–19%, depending on the storage capacity.
Excluding dispatchable low-carbon resources—i.e. flexible nuclear
power in this analysis—from the portfolio raises costs by up to
8.6% and increases the relative importance of energy storage, or
other sources of emissions-free flexibility, to integrate variable
renewable energy sources and meet the need for operating
reserves.

We find that under strict emissions limits, corresponding to a
roughly 63–91% reduction from today’s prevailing emissions rates,
energy storage can reduce generation costs by increasing the uti-
lization of installed resources and enabling greater penetration of
the lowest cost carbon-free resources. Total generation costs—ex-
cluding the cost of energy storage—fall by 7–11% as up to 30 GW
of energy storage is installed under a 100 tCO2/GWh emissions
limit and up to 12% under a 50 tCO2/GWh limit. However, energy
storage is only strictly necessary to meet tight emissions limits
in the absence of flexible dispatchable zero-carbon generation
technologies.

The value of longer duration (i.e., 10-h) energy storage
resources appears high enough to justify the deployment of
pumped-hydro resources at the low range of current costs, but
opportunities to deploy pumped-hydro storage is geographically
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limited. Conversely, the value of shorter-duration (i.e. 2-h) storage
technologies, such as Li-ion batteries, is only justified by genera-
tion cost savings under the most stringent carbon emissions limits,
and even then, only at low storage penetration levels. Hence, con-
tinued innovation and cost declines for Li-ion batteries and other
electrochemical energy storage technologies will be necessary to
economically justify large-scale deployment in future low-carbon
power systems.

Acknowledgements

The authors would like to thank J.I. Pérez-Arriaga and two
anonymous reviewers for helpful comments and review. The sub-
mitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory (‘‘Argonne”). Argonne, a
U.S. Department of Energy Office of Science laboratory, is operated
under Contract No. DE AC02-06CH11357. J.D.J. also gratefully
acknowledges support from the U.S. National Science Foundation
Graduate Research Fellowship program.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.apenergy.2016.
05.014.

References

[1] IPCC. Summary for policymakers, climate change 2014: mitigation of
climate change. Contribution of working Group III to the fifth assessment
report of the intergovernmental panel on climate change. Cambridge, UK:
Intergovernmental Panel on Climate Change; 2014.

[2] Weyant John P, Blanford Geoffrey J, Krey Volker, Clarke Leon, Edmonds Jae,
Fawcett Allen, et al. The role of technology for achieving climate policy
objectives: overview of the EMF 27 study on global technology and climate
policy strategies. Climatic Change 2014;123:353–67.

[3] IEA. Energy technology perspectives 2015: mobilising innovation to accelerate
climate action. Paris France: International Energy Agency; 2015. 2015.

[4] Denholm P, Ela E, Kirby B, Milligan M. The role of energy storage with
renewable electricity generation. National Renewable Energy Laboratory;
2010.

[5] Sioshansi Ramteen, Denholm Paul, Jenkin Thomas, Weiss Jurgen. Estimating
the value of electricity storage in PJM: arbitrage and some welfare effects.
Energy Econ 2009;31(2):269–77.

[6] Shcherbakovaa Anastasia, Kleitb Andrew, Chob Joohyun. The value of energy
storage in south korea’s electricity market: a hotelling approach. Appl Energy
2014;125:93–102.

[7] Bradbury Kyle, Pratson Lincoln, Patiño-Echeverri Dalia. Economic viability of
energy storage systems based on price arbitrage potential in real-time U.S.
electricity markets. Appl Energy 2014;114:512–9.

[8] McConnell Dylan, Forcey Tim, Sandiford Mike. Estimating the value of
electricity storage in an energy-only wholesale market. Appl Energy
2015;159:422–32.

[9] Denholm P, Hand M. Grid flexibility and storage required to achieve very high
penetration of variable renewable electricity. Energy Policy 2011;39
(3):1817–30.

[10] Cho Joohyun, Kleit Andrew N. Energy storage systems in energy and ancillary
markets: a backwards induction approach. Appl Energy 2014;147:176–83.

[11] Das Trishna, Krishnan Venkat, McCalley James D. Assessing the benefits and
economics of bulk energy storage technologies in the power grid. Appl Energy
2015;139:104–18.

[12] Black Mary, Strbac Goran. Value of bulk energy storage for managing wind
power fluctuations. IEEE Trans Energy Convers 2007;22(1):197–205.

[13] IEA. The power of transformation wind, sun and the economics of flexible
power systems. Paris: International Energy Agency; 2014.

[14] Cutter Eric, Haley Ben, Hargreaves Jeremy, Williams Jim. Utility scale energy
storage and the need for flexible capacity metrics. Appl Energy
2014;124:274–82.

[15] GE Energy, Western Wind and Solar Integration Study, Golden, CO, SR-550-
47434, 2010.

[16] Tuohy A, O’Malley M. Pumped storage in systems with very high wind
penetration. Energy Policy 2011;39(4):1965–74.

[17] Hittinger ES, Azevedo IML. Bulk energy storage increases United States
electricity system emissions. Environ Sci Technol 2015;49(5):3203–10.

[18] Lueken R, Apt J. The effects of bulk electricity storage on the PJM market.
Energy Systems 2014;5:1–14.
[19] Solomon AA, Kammen Daniel M, Callaway D. The role of large-scale energy
storage design and dispatch in the power grid: a study of very high grid
penetration of variable renewable resources. Appl Energy 2014;134:5–89.

[20] Pudjianto D et al. Whole-systems assessment of the value of energy storage in
low-carbon electricity systems. IEEE Trans Smart Grid 2014;5(2).

[21] Mileva A, Johnston J, Nelson JH, Kammen DM. Power system balancing for
deep decarbonization of the electricity sector. Appl Energy 2016;162:1001–9.

[22] Safaei H, Keith D. How much bulk energy storage is needed to decarbonize
electricity? Energy Environ Sci 2015.

[23] Pérez-Arriaga IJ, Linares P. Markets vs. regulation: a role for indicative energy
planning. Energy J March 2008:13.

[24] de Sisternes FJ, Webster MD, Perez-Arriaga JI. The impact of bidding rules on
electricity markets with intermittent renewables. IEEE Trans Power Syst
2015;30(3):1603–13.

[25] OECD-NEA. Nuclear energy and renewables system effects in low-carbon
electricity systems. Paris, France: OECD Nuclear Energy Agency; 2012.

[26] OECD-NEA. Technical and economic aspects of load following with nuclear
power plants. Paris, France: OECD Nuclear Energy Agency; 2011.

[27] EPRI. Program on technology innovation: approach to transition nuclear power
plants to flexible operations. Palo Alto, CA: Electric Power Research Institute;
2014.

[28] EUR, The European Utility Requirement (EUR) document, Revision D, European
Utilities Requirements for LWR Nuclear Power Plants, 2012.

[29] Westinghouse, AP1000 Design Control Document. Instrumentation and
Controls, 2009. [chapter 7].

[30] IEA. CO2 emissions from fuel combustion: highlights. 2014 Edition. Paris,
France: International Energy Agency; 2014.

[31] EIA. Annual Energy Outlook 2014, 2014.
[32] NREL. PV Watts Calculator. <http://pvwatts.nrel.gov/>.
[33] DOE. Wind Vision Report. U.S. Department of Energy; 2015.
[34] DOE. SunShot Vision Study. U.S. Department of Energy; 2012.
[35] EPRI & DOE. DOE/EPRI Electricity Storage Handbook in Collaboration with

NRECA. U.S. Department of Energy; 2013.
[36] Luo Xing, Wang Jihong, Dooner Mark, Clarke Jonathan. Overview of current

development in electrical energy storage technologies and the application
potential in power system operation. Appl Energy 2015;137:511–36.

[37] Botterud A, Levin T, Koritarov V. Pumped storage hydropower: benefits for grid
reliability and integration of variable renewable energy Report ANL/DIS-14/
10. Argonne National Laboratory; 2014.

[38] de Sisternes FJ, Investment Model for Renewable Electricity Systems (IMRES):
an electricity generation capacity expansion formulation with unit
commitment constraints, CEEPR Working Paper Series, no. 016, November 2013.

[39] Turvey R, Anderson D. Electricity Economics. Essays and Case
Studies. Baltimore and London: The World Bank, The Johns Hopkins
University Press; 1977.

[40] Ma J, Silva V, Belhomme R, Kirschen DS, Ochoa LF. Evaluating and planning
flexibility in sustainable power systems. IEEE Trans Sustain Energy 2013;4
(1):200–9.

[41] Jin S, Botterud A, Ryan SM. Temporal vs. stochastic granularity in thermal
generation capacity planning with wind power. IEEE Trans Power Syst
2014;29(5):2033–41.

[42] de Sisternes FJ, Webster MD. Optimal selection of sample weeks for
approximating the net load in generation planning problems. ESD Working
Paper Series, 2013. <http://esd.mit.edu/wps/2013/esd-wp-2013-03.pdf>.

[43] Wiser Ryan, Bolinger Mark. 2013 wind technologies market report. Lawrence
Berkeley National Laboratory; 2014.

[44] GTM Research, Solar Market Insight, 2014, 2014.
[45] Bandyk Matthew. Georgia power reveals $1B increase in vogtle nuclear project

costs. Transm Distrib World 2015. March 2015.
[46] ERCOT. Hourly load data archives. The Electric Reliability Council of Texas;

2015.
[47] Hirth L. The market value of variable renewables: The effect of solar wind

power variability on their relative price. Energy Econ 2013;38:218–36.
[48] Mills A, Wiser R. Changes in the economic value of variable generation at high

penetration levels: a pilot case study of California. Lawrence Berkeley National
Laboratory; 2012.

[49] Keane A et al. Capacity value of wind power. IEEE Trans Power Syst 2011;26
(2).

[50] Munoz FD, Mills AD. Endogenous assessment of the capacity value of solar PV
in generation investment planning studies. IEEE Trans Sustain Energy 2015.

[51] MIT. The future of solar energy. Massachusetts Institute of Technology; 2015.
[52] Holttinen H et al. Methodologies to determine operating reserves due to

increased wind power. IEEE Trans Sustain Energy 2012;3(4).
[53] GTM Research, U.S. Energy Storage Monitor, 2015.
[54] Nykvist B, Nilsson M. Rapidly falling costs of battery packs for electric vehicles.

Nature Climate Change 2015;5:329–32.
[55] EIA. Updated capital cost estimates for utility scale electricity generating

plantsAvailable from: <http://www.eia.gov/forecasts/capitalcost/pdf/
updated_capcost.pdf>2013.

[56] MIT. Managing large-scale penetration of intermittent renewables. An MIT
energy initiative symposium. Massachusetts Institute of Technology; 2011.

[57] EIA. How much carbon dioxide is produced when different fuels are
burned? U.S. Energy Information Administration; 2015.

http://dx.doi.org/10.1016/j.apenergy.2016.05.014
http://dx.doi.org/10.1016/j.apenergy.2016.05.014
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0005
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0005
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0005
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0005
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0010
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0010
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0010
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0010
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0015
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0015
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0020
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0020
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0020
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0025
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0025
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0025
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0030
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0030
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0030
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0035
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0035
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0035
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0040
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0040
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0040
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0045
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0045
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0045
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0050
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0050
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0055
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0055
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0055
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0060
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0060
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0065
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0065
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0070
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0070
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0070
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0080
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0080
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0085
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0085
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0090
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0090
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0095
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0095
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0095
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0100
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0100
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0105
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0105
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0110
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0110
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0115
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0115
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0120
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0120
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0120
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0125
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0125
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0130
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0130
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0135
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0135
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0135
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0150
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0150
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0160
http://pvwatts.nrel.gov/
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0170
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0175
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0180
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0180
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0185
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0185
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0185
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0190
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0190
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0190
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0200
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0200
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0200
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0205
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0205
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0205
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0210
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0210
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0210
http://esd.mit.edu/wps/2013/esd-wp-2013-03.pdf
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0220
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0220
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0230
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0230
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0235
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0235
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0240
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0240
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0245
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0245
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0245
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0250
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0250
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0255
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0255
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0260
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0265
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0265
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0275
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0275
http://www.eia.gov/forecasts/capitalcost/pdf/updated_capcost.pdf
http://www.eia.gov/forecasts/capitalcost/pdf/updated_capcost.pdf
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0285
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0285
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0290
http://refhub.elsevier.com/S0306-2619(16)30596-7/h0290

	The value of energy storage in decarbonizing the electricity sector
	1 Introduction
	2 Methods
	2.1 Demand, renewables and generation technology cost data sets
	2.2 Experimental design
	2.3 Generation capacity expansion model
	2.4 Time-domain representation

	3 Results
	3.1 Reducing the carbon footprint of electricity without energy storage
	3.2 The impact of energy storage on electricity mix and cost
	3.3 The impact of relying exclusively on renewables
	3.4 The impact of energy storage on renewable curtailment
	3.5 The economic value of energy storage

	4 Discussion
	5 Conclusion
	Acknowledgements
	Appendix A Supplementary material
	References


