
2/2/2019 Zk-SNARKs: Under the Hood – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/zk-snarks-under-the-hood-b33151a013f6 1/9

Zk-SNARKs: Under the Hood

This is the third part of a series of articles explaining how the technology

behind zk-SNARKs works; the previous articles on quadratic arithmetic

programs and elliptic curve pairings are required reading, and this article

will assume knowledge of both concepts. Basic knowledge of what zk-

SNARKs are and what they do is also assumed. See also Christian

Reitwiessner’s article here for another technical introduction.

In the previous articles, we introduced the quadratic arithmetic

program, a way of representing any computational problem with a

polynomial equation that is much more amenable to various forms of

mathematical trickery. We also introduced elliptic curve pairings,

which allow a very limited form of one-way homomorphic encryption

that lets you do equality checking. Now, we are going to start from

where we left o�, and use elliptic curve pairings, together with a few

other mathematical tricks, in order to allow a prover to prove that they

know a solution for a particular QAP without revealing anything else

about the actual solution.

This article will focus on the Pinocchio protocol by Parno, Gentry,

Howell and Raykova from 2013 (often called PGHR13); there are a few

variations on the basic mechanism, so a zk-SNARK scheme

implemented in practice may work slightly di�erently, but the basic

principles will in general remain the same.

Vitalik Buterin Follow

Feb 3, 2017 · 10 min read

. . .

To start o�, let us go into the key cryptographic assumption underlying

the security of the mechanism that we are going to use: the knowledge-

of-exponent assumption.

Basically, if you get a pair of points P and Q, where P * k = Q, and you

get a point C, then it is not possible to come up with C * k unless C is

https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649
https://medium.com/@VitalikButerin/exploring-elliptic-curve-pairings-c73c1864e627
https://blog.ethereum.org/2016/12/05/zksnarks-in-a-nutshell/
https://eprint.iacr.org/2013/279.pdf
https://medium.com/@VitalikButerin?source=post_header_lockup
https://medium.com/@VitalikButerin
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjz1-Ht7-vRAhVEr1QKHfvtAKIQFggaMAA&url=https%3A%2F%2Fwww.iacr.org%2Farchive%2Fcrypto2004%2F31520273%2Fbp.pdf&usg=AFQjCNFJk9kCq86ms46ZQVkMgAxTbPWEdg&bvm=bv.145822982,d.cGw


2/2/2019 Zk-SNARKs: Under the Hood – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/zk-snarks-under-the-hood-b33151a013f6 2/9

“derived” from P in some way that you know. This may seem intuitively

obvious, but this assumption actually cannot be derived from any other

assumption (eg. discrete log hardness) that we usually use when

proving security of elliptic curve-based protocols, and so zk-SNARKs do

in fact rest on a somewhat shakier foundation than elliptic curve

cryptography more generally — although it’s still sturdy enough that

most cryptographers are okay with it.

. . .

Now, let’s go into how this can be used. Supposed that a pair of points

(P, Q) falls from the sky, where P * k = Q, but nobody knows what the

value of k is. Now, suppose that I come up with a pair of points (R, S)

where R * k = S. Then, the KoE assumption implies that the only way I

could have made that pair of points was by taking P and Q, and

multiplying both by some factor r that I personally know. Note also that

thanks to the magic of elliptic curve pairings, checking that R = k * S

doesn’t actually require knowing k - instead, you can simply check

whether or not e(R, Q) = e(P, S).

Let’s do something more interesting. Suppose that we have ten pairs of

points fall from the sky: (P_1, Q_1), (P_2, Q_2)… (P_10, Q_10). In all

cases, P_i * k = Q_i. Suppose that I then provide you with a pair of

points (R, S) where R * k = S. What do you know now? You know that

R is some linear combination P_1 * i_1 + P_2 * i_2 + … + P_10 * i_10,

where I know the coe�cients i_1, i_2 … i_10. That is, the only way to

arrive at such a pair of points (R, S) is to take some multiples of P_1,

P_2 … P_10 and add them together, and make the same calculation

with Q_1, Q_2 … Q_10.

Note that, given any speci�c set of P_1…P_10 points that you might

want to check linear combinations for, you can’t actually create the

accompanying Q_1…Q_10 points without knowing what k is, and if

you do know what k is then you can create a pair (R, S) where R * k = S

for whatever R you want, without bothering to create a linear

combination. Hence, for this to work it’s absolutely imperative that

whoever creates those points is trustworthy and actually deletes k once

they created the ten points. This is where the concept of a “trusted
setup” comes from.

. . .



2/2/2019 Zk-SNARKs: Under the Hood – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/zk-snarks-under-the-hood-b33151a013f6 3/9

Remember that the solution to a QAP is a set of polynomials (A, B, C)

such that A(x) * B(x) - C(x) = H(x) * Z(x), where:

A is a linear combination of a set of polynomials {A_1…A_m}

B is the linear combination of {B_1…B_m} with the same

coe�cients

C is a linear combination of {C_1…C_m} with the same

coe�cients

The sets {A_1…A_m}, {B_1…B_m} and {C_1…C_m} and the

polynomial Z are part of the problem statement.

However, in most real-world cases, A, B and C are extremely large; for

something with many thousands of circuit gates like a hash function,

the polynomials (and the factors for the linear combinations) may have

many thousands of terms. Hence, instead of having the prover provide

the linear combinations directly, we are going to use the trick that we

introduced above to have the prover prove that they are providing

something which is a linear combination, but without revealing

anything else.

You might have noticed that the trick above works on elliptic curve

points, not polynomials. Hence, what actually happens is that we add

the following values to the trusted setup:

G * A_1(t), G * A_1(t) * k_a

G * A_2(t), G * A_2(t) * k_a

…

G * B_1(t), G * B_1(t) * k_b

G * B_2(t), G * B_2(t) * k_b

…

G * C_1(t), G * C_1(t) * k_c

G * C_2(t), G * C_2(t) * k_c

…

You can think of t as a “secret point” at which the polynomial is

evaluated. G is a “generator” (some random elliptic curve point that is

speci�ed as part of the protocol) and t, k_a, k_b and k_c are “toxic

•

•

•

•

•

•

•

•

•

•

•

•



2/2/2019 Zk-SNARKs: Under the Hood – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/zk-snarks-under-the-hood-b33151a013f6 4/9

waste”, numbers that absolutely must be deleted at all costs, or else

whoever has them will be able to make fake proofs. Now, if someone

gives you a pair of points P, Q such that P * k_a = Q (reminder: we

don’t need k_a to check this, as we can do a pairing check), then you

know that what they are giving you is a linear combination of A_i

polynomials evaluated at t.

Hence, so far the prover must give:

π_a = G * A(t), π’_a = G * A(t) * k_a

π_b = G * B(t), π’_b = G * B(t) * k_b

π_c = G * C(t), π’_c = G * C(t) * k_c

Note that the prover doesn’t actually need to know (and shouldn’t

know!) t, k_a, k_b or k_c to compute these values; rather, the prover

should be able to compute these values just from the points that we’re

adding to the trusted setup.

•

•

•

. . .

The next step is to make sure that all three linear combinations have

the same coe�cients. This we can do by adding another set of values to

the trusted setup: G * (A_i(t) + B_i(t) + C_i(t)) * b, where b is another

number that should be considered “toxic waste” and discarded as soon

as the trusted setup is completed. We can then have the prover create a

linear combination with these values with the same coe�cients, and

use the same pairing trick as above to verify that this value matches up

with the provided A + B + C.

Finally, we need to prove that A * B - C = H * Z. We do this once again

with a pairing check:

e(π_a, π_b) / e(π_c, G) ?= e(π_h, G * Z(t))

Where π_h = G * H(t). If the connection between this equation and A *

B - C = H * Z does not make sense to you, go back and read the article

on pairings.

We saw above how to convert A, B and C into elliptic curve points; G is

just the generator (ie. the elliptic curve point equivalent of the number

one). We can add G * Z(t) to the trusted setup. H is harder; H is just a

polynomial, and we predict very little ahead of time about what its

https://medium.com/@VitalikButerin/exploring-elliptic-curve-pairings-c73c1864e627


2/2/2019 Zk-SNARKs: Under the Hood – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/zk-snarks-under-the-hood-b33151a013f6 5/9

coe�cients will be for each individual QAP solution. Hence, we need to

add yet more data to the trusted setup; speci�cally the sequence:

G, G * t, G * t², G * t³, G * t⁴ ….

In the Zcash trusted setup, the sequence here goes up to about 2

million; this is how many powers of t you need to make sure that you

will always be able to compute H(t), at least for the speci�c QAP

instance that they care about. And with that, the prover can provide all

of the information for the veri�er to make the �nal check.

. . .

There is one more detail that we need to discuss. Most of the time we

don’t just want to prove in the abstract that some solution exists for

some speci�c problem; rather, we want to prove either the correctness

of some speci�c solution (eg. proving that if you take the word “cow”

and SHA3 hash it a million times, the �nal result starts with

0x73064fe5), or that a solution exists if you restrict some of the

parameters. For example, in a cryptocurrency instantiation where

transaction amounts and account balances are encrypted, you want to

prove that you know some decryption key k such that:

decrypt(old_balance, k) ≥ decrypt(tx_value, k)

decrypt(old_balance, k) - decrypt(tx_value, k) =

decrypt(new_balance, k)

The encrypted old_balance, tx_value and new_balance should be

speci�ed publicly, as those are the speci�c values that we are looking to

verify at that particular time; only the decryption key should be hidden.

Some slight modi�cations to the protocol are needed to create a

“custom veri�cation key” that corresponds to some speci�c restriction

on the inputs.

1.

2.

. . .

Now, let’s step back a bit. First of all, here’s the veri�cation algorithm in

its entirety, courtesy of ben Sasson, Tromer, Virza and Chiesa:

https://eprint.iacr.org/2013/879.pdf


2/2/2019 Zk-SNARKs: Under the Hood – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/zk-snarks-under-the-hood-b33151a013f6 6/9

The �rst line deals with parametrization; essentially, you can think of

its function as being to create a “custom veri�cation key” for the speci�c

instance of the problem where some of the arguments are speci�ed. The

second line is the linear combination check for A, B and C; the third

line is the check that the linear combinations have the same

coe�cients, and the fourth line is the product check A * B - C = H * Z.

Altogether, the veri�cation process is a few elliptic curve

multiplications (one for each “public” input variable), and �ve pairing

checks, one of which includes an additional pairing multiplication. The

proof contains eight elliptic curve points: a pair of points each for A(t),

B(t) and C(t), a point π_k for b * (A(t) + B(t) + C(t)), and a point π_h

for H(t). Seven of these points are on the F_p curve (32 bytes each, as

you can compress the y coordinate to a single bit), and in the Zcash

implementation one point (π_b) is on the twisted curve in F_p² (64

bytes), so the total size of the proof is ~288 bytes.

The two computationally hardest parts of creating a proof are:

Dividing (A * B - C) / Z to get H (algorithms based on the Fast

Fourier transform can do this in sub-quadratic time, but it’s still

quite computationally intensive)

Making the elliptic curve multiplications and additions to create

the A(t), B(t), C(t) and H(t) values and their corresponding pairs

The basic reason why creating a proof is so hard is the fact that what

was a single binary logic gate in the original computation turns into an

operation that must be cryptographically processed through elliptic

curve operations if we are making a zero-knowledge proof out of it.

This fact, together with the superlinearity of fast Fourier transforms,

•

•

https://en.wikipedia.org/wiki/Fast_Fourier_transform


2/2/2019 Zk-SNARKs: Under the Hood – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/zk-snarks-under-the-hood-b33151a013f6 7/9

means that proof creation takes ~20–40 seconds for a Zcash

transaction.

. . .

Another very important question is: can we try to make the trusted

setup a little… less trust-demanding? Unfortunately we can’t make it

completely trustless; the KoE assumption itself precludes making

independent pairs (P_i, P_i * k) without knowing what k is. However,

we can increase security greatly by using N-of-N multiparty

computation - that is, constructing the trusted setup between N parties

in such a way that as long as at least one of the participants deleted

their toxic waste then you’re okay.

To get a bit of a feel for how you would do this, here’s a simple

algorithm for taking an existing set (G, G * t, G * t², G * t³…), and

“adding in” your own secret so that you need both your secret and the

previous secret (or previous set of secrets) to cheat.

The output set is simply:

G, (G * t) * s, (G * t²) * s², (G * t³) * s³…

Note that you can produce this set knowing only the original set and s,

and the new set functions in the same way as the old set, except now

using t*s as the “toxic waste” instead of t. As long as you and the person

(or people) who created the previous set do not both fail to delete your

toxic waste and later collude, the set is “safe”.

Doing this for the complete trusted setup is quite a bit harder, as there

are several values involved, and the algorithm has to be done between

the parties in several rounds. It’s an area of active research to see if the

multi-party computation algorithm can be simpli�ed further and made

to require fewer rounds or made more parallelizable, as the more you

can do that the more parties it becomes feasible to include into the

trusted setup procedure. It’s reasonable to see why a trusted setup

between six participants who all know and work with each other might

make some people uncomfortable, but a trusted setup with thousands

of participants would be nearly indistinguishable from no trust at all -

and if you’re really paranoid, you can get in and participate in the setup

procedure yourself, and be sure that you personally deleted your value.

Another area of active research is the use of other approaches that do

not use pairings and the same trusted setup paradigm to achieve the



2/2/2019 Zk-SNARKs: Under the Hood – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/zk-snarks-under-the-hood-b33151a013f6 8/9

same goal; see Eli ben Sasson’s recent presentation for one alternative

(though be warned, it’s at least as mathematically complicated as

SNARKs are!)

Special thanks to Ariel Gabizon and Christian Reitwiessner for reviewing.

https://www.youtube.com/watch?v=HJ9K_o-RRSY


2/2/2019 Zk-SNARKs: Under the Hood – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/zk-snarks-under-the-hood-b33151a013f6 9/9


