
2/2/2019 Quadratic Arithmetic Programs: from Zero to Hero – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649 1/15

Quadratic Arithmetic Programs: from
Zero to Hero

There has been a lot of interest lately in the technology behind zk-

SNARKs, and people are increasingly trying to demystify something

that many have come to call “moon math” due to its perceived sheer

indecipherable complexity. zk-SNARKs are indeed quite challenging to

grasp, especially due to the sheer number of moving parts that need to

come together for the whole thing to work, but if we break the

technology down piece by piece then comprehending it becomes

simpler.

The purpose of this post is not to serve as a full introduction to zk-

SNARKs; it assumes as background knowledge that (i) you know what

zk-SNARKs are and what they do, and (ii) know enough math to be

able to reason about things like polynomials (if the statement P(x) +

Q(x) = (P + Q)(x) , where P and Q are polynomials, seems natural

and obvious to you, then you’re at the right level). Rather, the post digs

deeper into the machinery behind the technology, and tries to explain

as well as possible the �rst half of the pipeline, as drawn by zk-SNARK

researcher Eran Tromer here:

Vitalik Buterin Follow

Dec 12, 2016 · 13 min read

https://blog.ethereum.org/2016/12/05/zksnarks-in-a-nutshell/
https://medium.com/@VitalikButerin?source=post_header_lockup
https://medium.com/@VitalikButerin

2/2/2019 Quadratic Arithmetic Programs: from Zero to Hero – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649 2/15

The steps here can be broken up into two halves. First, zk-SNARKs

cannot be applied to any computational problem directly; rather, you

have to convert the problem into the right “form” for the problem to

operate on. The form is called a “quadratic arithmetic program” (QAP),

and transforming the code of a function into one of these is itself highly

nontrivial. Along with the process for converting the code of a function

into a QAP is another process that can be run alongside so that if you

have an input to the code you can create a corresponding solution

(sometimes called “witness” to the QAP). After this, there is another

fairly intricate process for creating the actual “zero knowledge proof”

for this witness, and a separate process for verifying a proof that

someone else passes along to you, but these are details that are out of

scope for this post.

The example that we will choose is a simple one: proving that you

know the solution to a cubic equation: x**3 + x + 5 == 35 (hint: the

answer is 3). This problem is simple enough that the resulting QAP will

not be so large as to be intimidating, but nontrivial enough that you can

see all of the machinery come into play.

Let us write out our function as follows:

def qeval(x):
 y = x**3
 return x + y + 5

2/2/2019 Quadratic Arithmetic Programs: from Zero to Hero – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649 3/15

The simple special-purpose programming language that we are using

here supports basic arithmetic (+, -, *, /), constant-power

exponentiation (x**7 but not x**y) and variable assignment, which is

powerful enough that you can theoretically do any computation inside

of it (as long as the number of computational steps is bounded; no

loops allowed). Note that modulo (%) and comparison operators (<,

>, ≤, ≥) are NOT supported, as there is no e�cient way to do modulo

or comparison directly in �nite cyclic group arithmetic (be thankful for

this; if there was a way to do either one, then elliptic curve

cryptography would be broken faster than you can say “binary search”

and “Chinese remainder theorem”).

You can extend the language to modulo and comparisons by providing

bit decompositions (eg. 13 = 2**3 + 2**2 + 1) as auxiliary inputs,

proving correctness of those decompositions and doing the math in

binary circuits; in �nite �eld arithmetic, doing equality (==) checks is

also doable and in fact a bit easier, but these are both details we won’t

get into right now. We can extend the language to support conditionals

(eg. if x < 5: y = 7; else: y = 9) by converting them to an

arithmetic form: y = 7 * (x < 5) + 9 * (x >= 5) ; though note that

both “paths” of the conditional would need to be executed, and if you

have many nested conditionals then this can lead to a large amount of

overhead.

Let us now go through this process step by step. If you want to do this

yourself for any piece of code, I implemented a compiler here (for

educational purposes only; not ready for making QAPs for real-world

zk-SNARKs quite yet!).

Flattening
The �rst step is a “�attening” procedure, where we convert the original

code, which may contain arbitrarily complex statements and

expressions, into a sequence of statements that are of two forms: x =

y (where y can be a variable or a number)and x = y (op) z (where

op can be +, -, *, / and y and z can be variables, numbers or

themselves sub-expressions). You can think of each of these statements

as being kind of like logic gates in a circuit. The result of the �attening

process for the above code is as follows:

https://github.com/ethereum/research/tree/master/zksnark

2/2/2019 Quadratic Arithmetic Programs: from Zero to Hero – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649 4/15

sym_1 = x * x
y = sym_1 * x
sym_2 = y + x
~out = sym_2 + 5

If you read the original code and the code here, you can fairly easily see

that the two are equivalent.

Gates to R1CS
Now, we convert this into something called a rank-1 constraint system

(R1CS). An R1CS is a sequence of groups of three vectors (a, b, c) ,

and the solution to an R1CS is a vector s , where s must satisfy the

equation s . a * s . b - s . c = 0 , where . represents the dot

product - in simpler terms, if we "zip together" a and s , multiplying

the two values in the same positions, and then take the sum of these

products, then do the same to b and s and then c and s , then the

third result equals the product of the �rst two results. For example, this

is a satis�ed R1CS:

But instead of having just one constraint, we are going to have many

constraints: one for each logic gate. There is a standard way of

converting a logic gate into a (a, b, c) triple depending on what the

operation is (+, -, * or /) and whether the arguments are variables or

numbers. The length of each vector is equal to the total number of

variables in the system, including a dummy variable ~one at the �rst

index representing the number 1, the input variables, a dummy

variable ~out representing the output, and then all of the

intermediate variables (sym1 and sym2 above); the vectors are

2/2/2019 Quadratic Arithmetic Programs: from Zero to Hero – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649 5/15

generally going to be very sparse, only �lling in the slots corresponding

to the variables that are a�ected by some particular logic gate.

First, we’ll provide the variable mapping that we’ll use:

'~one', 'x', '~out', 'sym_1', 'y', 'sym_2'

The solution vector will consist of assignments for all of these variables,

in that order.

Now, we’ll give the (a, b, c) triple for the �rst gate:

a = [0, 1, 0, 0, 0, 0]
b = [0, 1, 0, 0, 0, 0]
c = [0, 0, 0, 1, 0, 0]

You can see that if the solution vector contains 3 in the second position,

and 9 in the fourth position, then regardless of the rest of the contents

of the solution vector, the dot product check will boil down to 3 * 3 = 9,

and so it will pass. If the solution vector has -3 in the second position

and 9 in the fourth position, the check will also pass; in fact, if the

solution vector has 7 in the second position and 49 in the fourth

position then that check will still pass — the purpose of this �rst check is

to verify the consistency of the inputs and outputs of the �rst gate only.

Now, let’s go on to the second gate:

a = [0, 0, 0, 1, 0, 0]
b = [0, 1, 0, 0, 0, 0]
c = [0, 0, 0, 0, 1, 0]

In a similar style to the �rst dot product check, here we’re checking that

sym_1 * x = y .

Now, the third gate:

2/2/2019 Quadratic Arithmetic Programs: from Zero to Hero – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649 6/15

a = [0, 1, 0, 0, 1, 0]
b = [1, 0, 0, 0, 0, 0]
c = [0, 0, 0, 0, 0, 1]

Here, the pattern is somewhat di�erent: it’s multiplying the �rst

element in the solution vector by the second element, then by the �fth

element, adding the two results, and checking if the sum equals the

sixth element. Because the �rst element in the solution vector is always

one, this is just an addition check, checking that the output equals the

sum of the two inputs.

Finally, the fourth gate:

a = [5, 0, 0, 0, 0, 1]
b = [1, 0, 0, 0, 0, 0]
c = [0, 0, 1, 0, 0, 0]

Here, we’re evaluating the last check, ~out = sym_2 + 5 . The dot

product check works by taking the sixth element in the solution vector,

adding �ve times the �rst element (reminder: the �rst element is 1, so

this e�ectively means adding 5), and checking it against the third

element, which is where we store the output variable.

And there we have our R1CS with four constraints. The witness is

simply the assignment to all the variables, including input, output and

internal variables:

[1, 3, 35, 9, 27, 30]

You can compute this for yourself by simply “executing” the �attened

code above, starting o� with the input variable assignment x=3, and

putting in the values of all the intermediate variables and the output as

you compute them.

The complete R1CS put together is:

A
[0, 1, 0, 0, 0, 0]

2/2/2019 Quadratic Arithmetic Programs: from Zero to Hero – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649 7/15

[0, 0, 0, 1, 0, 0]
[0, 1, 0, 0, 1, 0]
[5, 0, 0, 0, 0, 1]

B
[0, 1, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0]

C
[0, 0, 0, 1, 0, 0]
[0, 0, 0, 0, 1, 0]
[0, 0, 0, 0, 0, 1]
[0, 0, 1, 0, 0, 0]

R1CS to QAP
The next step is taking this R1CS and converting it into QAP form,

which implements the exact same logic except using polynomials

instead of dot products. We do this as follows. We go from four groups

of three vectors of length six to six groups of three degree-3

polynomials, where evaluating the polynomials at each x coordinate

represents one of the constraints. That is, if we evaluate the

polynomials at x=1, then we get our �rst set of vectors, if we evaluate

the polynomials at x=2, then we get our second set of vectors, and so

on.

We can make this transformation using something called a Lagrange

interpolation. The problem that a Lagrange interpolation solves is this:

if you have a set of points (ie. (x, y) coordinate pairs), then doing a

Lagrange interpolation on those points gives you a polynomial that

passes through all of those points. We do this by decomposing the

problem: for each x coordinate, we create a polynomial that has the

desired y coordinate at that x coordinate and a y coordinate of 0 at all

the other x coordinates we are interested in, and then to get the �nal

result we add all of the polynomials together.

Let’s do an example. Suppose that we want a polynomial that passes

through (1, 3), (2, 2) and (3, 4). We start o� by making a polynomial

that passes through (1, 3), (2, 0) and (3, 0). As it turns out, making a

polynomial that “sticks out” at x=1 and is zero at the other points of

interest is easy; we simply do:

(x - 2) * (x - 3)

2/2/2019 Quadratic Arithmetic Programs: from Zero to Hero – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649 8/15

Which looks like this:

Now, we just need to “rescale” it so that the height at x=1 is right:

(x - 2) * (x - 3) * 3 / ((1 - 2) * (1 - 3))

This gives us:

1.5 * x**2 - 7.5 * x + 9

2/2/2019 Quadratic Arithmetic Programs: from Zero to Hero – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649 9/15

We then do the same with the other two points, and get two other

similar-looking polynomials, except that they “stick out” at x=2 and

x=3 instead of x=1. We add all three together and get:

1.5 * x**2 - 5.5 * x + 7

2/2/2019 Quadratic Arithmetic Programs: from Zero to Hero – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649 10/15

With exactly the coordinates that we want. The algorithm as described

above takes O(n**3) time, as there are n points and each point requires

O(n**2) time to multiply the polynomials together; with a little

thinking, this can be reduced to O(n**2) time, and with a lot more

thinking, using fast Fourier transform algorithms and the like, it can be

reduced even further — a crucial optimization when functions that get

used in zk-SNARKs in practice often have many thousands of gates.

Now, let’s use Lagrange interpolation to transform our R1CS. What we

are going to do is take the �rst value out of every a vector, use

Lagrange interpolation to make a polynomial out of that (where

evaluating the polynomial at i gets you the �rst value of the ith a

vector), repeat the process for the �rst value of every b and c vector,

and then repeat that process for the second values, the third, values,

and so on. For convenience I'll provide the answers right now:

A polynomials
[-5.0, 9.166, -5.0, 0.833]
[8.0, -11.333, 5.0, -0.666]
[0.0, 0.0, 0.0, 0.0]
[-6.0, 9.5, -4.0, 0.5]
[4.0, -7.0, 3.5, -0.5]
[-1.0, 1.833, -1.0, 0.166]

2/2/2019 Quadratic Arithmetic Programs: from Zero to Hero – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649 11/15

B polynomials
[3.0, -5.166, 2.5, -0.333]
[-2.0, 5.166, -2.5, 0.333]
[0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0]

C polynomials
[0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0]
[-1.0, 1.833, -1.0, 0.166]
[4.0, -4.333, 1.5, -0.166]
[-6.0, 9.5, -4.0, 0.5]
[4.0, -7.0, 3.5, -0.5]

Coe�cients are in ascending order, so the �rst polynomial above is

actually 0.833 * x**3 — 5*x**2 + 9.166*x - 5 . This set of polynomials

(plus a Z polynomial that I will explain later) makes up the parameters

for this particular QAP instance. Note that all of the work up until this

point needs to be done only once for every function that you are trying

to use zk-SNARKs to verify; once the QAP parameters are generated,

they can be reused.

Let’s try evaluating all of these polynomials at x=1. Evaluating a

polynomial at x=1 simply means adding up all the coe�cients (as 1**k

= 1 for all k), so it’s not di�cult. We get:

A results at x=1
0
1
0
0
0
0

B results at x=1
0
1
0
0
0
0

C results at x=1
0
0
0
1
0
0

2/2/2019 Quadratic Arithmetic Programs: from Zero to Hero – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649 12/15

And lo and behold, what we have here is exactly the same as the set of

three vectors for the �rst logic gate that we created above.

Checking the QAP
Now what’s the point of this crazy transformation? The answer is that

instead of checking the constraints in the R1CS individually, we can

now check all of the constraints at the same time by doing the dot

product check on the polynomials.

Because in this case the dot product check is a series of additions and

multiplications of polynomials, the result is itself going to be a

polynomial. If the resulting polynomial, evaluated at every x coordinate

that we used above to represent a logic gate, is equal to zero, then that

means that all of the checks pass; if the resulting polynomial evaluated

at at least one of the x coordinate representing a logic gate gives a

nonzero value, then that means that the values going into and out of

that logic gate are inconsistent (ie. the gate is y = x * sym_1 but the

provided values might be x = 2 , sym_1 = 2 and y = 5).

Note that the resulting polynomial does not itself have to be zero, and

in fact in most cases won’t be; it could have any behavior at the points

that don’t correspond to any logic gates, as long as the result is zero at

all the points that do correspond to some gate. To check correctness, we

don’t actually evaluate the polynomial t = A . s * B . s - C . s at

every point corresponding to a gate; instead, we divide t by another

polynomial, Z , and check that Z evenly divides t - that is, the

division t / Z leaves no remainder.

Z is de�ned as (x - 1) * (x - 2) * (x - 3) ... - the simplest

polynomial that is equal to zero at all points that correspond to logic

gates. It is an elementary fact of algebra that any polynomial that is

2/2/2019 Quadratic Arithmetic Programs: from Zero to Hero – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649 13/15

equal to zero at all of these points has to be a multiple of this minimal

polynomial, and if a polynomial is a multiple of Z then its evaluation at

any of those points will be zero; this equivalence makes our job much

easier.

Now, let’s actually do the dot product check with the polynomials

above. First, the intermediate polynomials:

A . s = [43.0, -73.333, 38.5, -5.166]
B . s = [-3.0, 10.333, -5.0, 0.666]
C . s = [-41.0, 71.666, -24.5, 2.833]

Now, A . s * B . s — C . s:

t = [-88.0, 592.666, -1063.777, 805.833, -294.777, 51.5,
-3.444]

Now, the minimal polynomial Z = (x - 1) * (x - 2) * (x - 3) * (x

- 4) :

Z = [24, -50, 35, -10, 1]

And if we divide the result above by Z, we get:

h = t / Z = [-3.666, 17.055, -3.444]

With no remainder.

And so we have the solution for the QAP. If we try to falsify any of the

variables in the R1CS solution that we are deriving this QAP solution

from — say, set the last one to 31 instead of 30, then we get a t

polynomial that fails one of the checks (in that particular case, the

result at x=3 would equal -1 instead of 0), and furthermore t would

not be a multiple of Z; rather, dividing t / Z would give a remainder

of [-5.0, 8.833, -4.5, 0.666] .

2/2/2019 Quadratic Arithmetic Programs: from Zero to Hero – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649 14/15

Note that the above is a simpli�cation; “in the real world”, the addition,

multiplication, subtraction and division will happen not with regular

numbers, but rather with �nite �eld elements — a spooky kind of

arithmetic which is self-consistent, so all the algebraic laws we know

and love still hold true, but where all answers are elements of some

�nite-sized set, usually integers within the range from 0 to n-1 for some

n. For example, if n = 13, then 1 / 2 = 7 (and 7 * 2 = 1), 3 * 5 = 2, and

so forth. Using �nite �eld arithmetic removes the need to worry about

rounding errors and allows the system to work nicely with elliptic

curves, which end up being necessary for the rest of the zk-SNARK

machinery that makes the zk-SNARK protocol actually secure.

Special thanks to Eran Tromer for helping to explain many details

about the inner workings of zk-SNARKs to me.

2/2/2019 Quadratic Arithmetic Programs: from Zero to Hero – Vitalik Buterin – Medium

https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649 15/15

