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These notes define the problem of secure communication, identify the relevant agents, and offer
some assumptions about those agents. An initial effort at a solution involvesthe agents sharing
a secret, and produces a private-key method called the One Time Pad algorithm, which seems a
good candidate for secure communication. To check if this is true, the notion of perfect security is
then defined more precisely and OTP is proved to be secure. Although OTPis secure, it has several
undesirable features, such as unbounded key lengths. (We also prove that no secret key cryptosystem
is secure in the Shannon sense unless the key length is unbounded. This isthe Shannon Theorem.)
We attempt to circumvent the key length problem by changing the assumptions about the agents.
Namely, we no longer assume a computationally unbounded adversary. Thisleads to a new class of
“public key” encryption methods where the agents do not share a secret.The requirements of public
key encryption motivate the use of One Way Functions and trapdoor functions, whose properties are
described.

1 DESCRIPTION OFPROBLEM

Assume there are three agents, Bob, Alice, and Eve. Bob wants to send Alice a private letter that
only Alice can read. Eve is an adversary who may intercept the letter, but reading it should not
enable her to reconstruct Bob’s message to Alice. This is the essence of the problem of secure
communication. A more formal definition of “secure” will be given later.

To meet these requirements, Bob must somehow alter his message to Alice so it cannot be
understood by anyone else. This alteration is called encryption. Ifm is the message to be encrypted,
(also known as the “plaintext” or the “cleartext”) thenc, the encrypted message, (also known as the
“ciphertext”) is produced by an encryption functionE(m, ???)→ c, which Bob uses. Alice uses a
symmetric decryption functionD(c, ???)→ m.

The question marks in the function definitions stand for other pieces of information that may
be provided to the encryption/decryption functions, depending on the specific method being used.
Some possibilities are:

• Sb: A piece of secret information known to Bob but not to Eve.

• Sa: A piece of secret information known to Alice but not to Eve.

• PK: A piece of public information, available to everyone.

• R: A random factor, presumably drawn from some pseudo-random distribution. This variable
is only applicable on Bob’s end; Alice deterministically decrypts the ciphertext(since we want
errorless communication).

Notice, Eve does not knowSa or Sb, even thoughSa andSb could have a common piece of
shared secrets. Thiss is not known to Eve, but is known to both Alice and Bob.
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2 INITIAL ASSUMPTIONS

To describe the nature ofE andD more precisely, some assumptions about the agents must first be
made.

• The encryption and decryption algorithms are public information known by allagents.

• Alice mustalwaysbe able to recover the correct message.

• Eve is computationally strong, i.e. has an unbounded computational power. This assumption
will be relaxed later to allow for more realistic modeling, but we assume it for now.

3 OBSERVATIONS

Some observations follow from these assumptions:

1. Alice must have a secret from Eve.

Rationale: Alice must be able to decrypt the message from Bob. If Eve knows everything
Alice knows, then Eve is functionally equivalent to Alice. Namely, if Alice can read the
message then so can Eve. This contradicts the problem definition.

2. Bob must have a secret from Eve. In fact, Alice and Bob must sharea secrets not known
to Eve.

Rationale:Let Bob’s message bem, and letX be all the other information he uses to produce
c (includes his randomness, possible secret key, etc.). Eve can go through all candidate values
m′ for m andX ′ for X, until E(m′, X ′) = c. When this happens, Eve is sure thatm = m′

unless Alice knows a part ofX. Indeed, otherwise and ifm is different fromm′, from Alice’s
point of view the message could be bothm andm′, which contradicts unique decodability.
Thus, the only way Eve should still be unsure ifm = m′ is if Alice knows a part ofX, i.e.
Alice and Bob share a non-empty secrets not known to Eve.

4 ONE TIME PAD

Now we have a pattern for encryption where Bob and Alice must have a shared secrets. We next
describe a specific implementation of such an encryption system, called theOne Time Pad(OTP).
(Note that OTP is a specific scheme for achieving our goal but not the onlysuch scheme possible.) In
One Time Pad, we assume that the messagem is somehow chosen from the domainM = {0, 1}k,
while a shared secret keys is chosenat randomfrom the domainS = {0, 1}k. Notice, in OTP
Alice and Bob do not need any other secret information (beside the shared s which is secret from
Eve).

DEFINITION 1 The One Time Pad (OTP) encryption function is easily described; simply take
the exclusive OR of the message string and the keys. This produces the cipherc, which can be
decrypted by XORing it with the keys:

E(m, s) = m ⊕ s

D(c, s) = c ⊕ s
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♦

Intuitively, OTP is good because every messagem ∈M and ciphertextc ∈ C correspond to the
unique keys = m⊕ c. So without the key, all messages are indistinguishable to Eve.

Remark 1 Before the OTP, people had many other cryptosystem, including Ceasar cipher, shift
cipher, substritution cipher, hill cipher, vigenere cipher, permutation cipher, and many others. Most
of these ciphers are “insecure” (whatever this means for each of them). It is somewhat entertaining
to study these ciphers and see why each of them is not secure. However, since this will not be useful
for the remainder of the course, we will not do this here. Interested readers are referred to Chapter
1 of the Stinson’s book.

5 DEFINING PERFECTSECURITY

This seems like a good system, but we’d like stronger verification. What do we mean when we say
that a system is secure? By “system” we don;t just mean the OTP system, but any encryption where
Alice and Bob (necessarily) share some secret key. Since in our assumptions the adversary (Eve)
can access the encrypted text, an intuitive definition of perfect security isthis: A method is secure iff
the “odds” of the adversary to figure outm are the same whether or not he hasc, i.e. seeingc does
not increase these “odds”. Of course, the problem is in formalizing the above informal definition.
To do this, assume a messageM was chosen by Bob from some probability distribution overM
and Bob publicly announced this distribution. As we will see, the the definition below makes sense
for any message distributionM , but for simplicity — and because it will suffice for our purposes
— the reader may assume thatM is chosen by Bob uniformly at random fromM. At this stage,
from Eve’s point of view each possibilityM = m is equally likely. Now assume Bob computes the
ciphertextC = Es(M) and gives the particular outcome (which happens to be somec ∈ C) to Eve.
We now estimate again the probability thatM = m after Eve has learned thatC = c. If the system
is ideally secure, this probability should not change (i.e. remain uniform overM), irrespective of
specificm andc. Notice, the above probability is also taken over the random choice of the shared
keys. Formally:

DEFINITION 2 Let M ∈ M be a random message andC ∈ C be the ciphertext ofM , that is,
C = Es(M). For anym ∈ M andc ∈ C, an encryption system is calledperfectly secureif from
the perspective of the attacker,Pr(M = m | C = c) = Pr(M = m). This means that Eve’s
probability of guessingM remains unchanged after seeing any particular outcomeC = c. ♦

We can now formally show that OTP is secure:

Proof: Take anym ∈M andc ∈ C.

Pr(M = m | C = c) =
Pr(M = m ∧ C = c)

Pr(C = c)

=
Pr(M = m) · Pr(C = c |M = m)

Pr(C = c)

=
Pr(M = m) · Pr(C = c |M = m)

∑

m̃∈M
(Pr(M = m̃) · Pr(C = c |M = m̃))
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We obtain step 1 from Bayes’s law. Step 2 comes from the definition of conditional probability.
In step 3, we expand outPr(C = c), which is the sum of all the conditional probabilities that
Pr(C = c), weighted by the probability of the condition. Namely, we sum over all possiblem̃’s.

We then note thatPr(C = c | M = m̃) = Pr(s = c ⊕ m̃), asm̃ ⊕ s = c iff messagem̃
and unique keys produce ciphertextc. Since everys ∈ {0, 1}k is just as likely, the probability is
uniform over the key space:Pr(s = c ⊕ m̃) = 1

2k . Hence,

Pr(M = m | C = c) =
Pr(M = m) · 1

2k

∑

m̃∈M

(

Pr(M = m̃) · 1

2k )
)

=
Pr(M = m)

∑

m̃∈M
Pr(M = m̃)

=
Pr(M = m)

1

Thus,Pr(M = m | C = c) = Pr(M = m), so OTP’s security has been proven.

Remark 2 As we can see, the fact thatM is uniformly random was not used anywhere in the proof.
Thus, OTP is perfectly secure foranymessage distributionM .

6 PROBLEMS WITH ONE TIME PAD

Even though the OTP method is secure, it has several undesirable features. First, each message
must use a new key. Indeed, if Bob sends using the same keys two ciphertexts,c0 = m0 ⊕ s and
c1 = m1⊕ s, then we havec0⊕ c1 = (m0⊕ s)⊕ (m1⊕ s) = m0⊕m1. Thus, Eve certainly learns
at leastm0 ⊕m1, which is a lot of information! In particular, ifm0 is later revealed to Eve (say, it
is no longer important), Eve will learnm1, which could still be important. Clearly, this should not
happen in the the ideal system.

Thus, if OTP is to remain secure with multiple message, it seems like a new key has tobe used
per each message. But since the length of each key in OTP is equal to the length of the encrypted
message, it means that the overall length of the shared secret must be equal to the total number of
secretly communicated bits. This seems to be really prohibitive for long term communication. The
immediate question that comes to mind is whether this negative phenomenon is a specific feature of
the OTP (and maybe we could do better with a better scheme), or there is some deeper reason for
this inefficiency that will prevail inanyperfectly secure system. Unfortunately, the latter is the case
as was shown by Shannon.

Theorem 1 (Shannon)For any perfectly secure scheme where Alice and Bob share a keys from
spaceS and can encrypt any messagem from spaceM, we must have|S| ≥ |M|. Thus, OPT is
optimal in this regard.

Proof: Take any valid ciphertextc (which, say, could correspond to some messagem0 under the
appropriate choice of the key). Let us count the number of messagesm that could result from
the decryption ofc under some valid secret keys. Call this numberA and let us estimateA in
two different ways. On the one hand, each keys in S can correspond to at most onem, since
Alice should decryptc in at most one way for each choice ofs (else unique decodability is gone).
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Thus,A ≤ |S|. On the other hand, we claim thatA = |M|, i.e. everym ∈ M can result in
producingc when encrypted by Bob. Indeed, if this was not the case for somem, then the a-priori
Pr(M = m) > 0, while if C = c (which could happen with non-zero probability, say ifM was
equal tom0 that could in turn result inC = c by assumption), thenPr(M = m | C = c) = 0,
which would contradict the perfect security. Thus,A = |M| ≤ |S|, completing the proof.

The above result shows some severe limitations of perfect security: the key must be as long as
the message. Hence, the problem ofkey exchange(i.e., Alice and Bob agreeing in advance of the
key) becomes a real issue. Clearly, we would like to find a better, more practical way to encrypt our
data.

7 COMPUTATIONALLY BOUNDED ADVERSARIES

These previous negative results do not mean that encryption has no hope of succeeding. Indeed, the
assumption that Eve has unbounded computing power is perhaps too strong. In reality, Eve does
not, so we make the reasonable assumption on Eve’s computing power. In turns out, the realistic
and convenient way to model this is to say that Eve has onlyprobabilistic polynomial time(PPT)
computing power. To be fair, we shall restrict Alice and Bob toPPT as well.

Before defining this concept, let us by first defining aPolynomial Time Algorithm.

DEFINITION 3 [poly-time (Polynomial Time) Algorithm] If an algorithmA gets an input of sizek,
it is considered polynomial time if it runs inO(kc) time, wherec is a constant. We writey = A(x)
to denote the output ofA on inputx. ♦

Now, let us defineprobabilistic polynomial time(PPT).

DEFINITION 4 [PPT (Probabilistic Polynomial Time) Algorithm] It is a polynomial time algorithm
A that is randomized. Namely, it is allowed to flip coins during its computation. We writey =
A(x; r) to denote the output ofA on inputx, whenr were the internal coin tosses made byA.1 We
write y ← A(x) to denote therandom variabley which corresponds to the randomized output ofA

on inputx. This means thatr was chosen at random andy = A(x; r) was computed. ♦

Finally, only bounding the running time of Eve will not be sufficient to get outof the Shannon’s
impossibility result. We will make it a bit more formal later, but, intuitively, this is because Eve can
always try to guess the value which is hard to compute, and this way get a “negligible” chance to
break the resulting cryptosystem, even though it would take Eve a very longtime to break it with
any “significant” probability. In other words, although the “advatange” of Eve over an ideal system
might be non-zero, it will be so small (as long as Eve isPPT), that for all effective purposes it can
simply be ignored.

This leads to the following definition of anegligible function.

DEFINITION 5 [Negligible Function (negl(k))] A function v(k) is called negligible, and denoted
negl(k), if:

(∀c > 0) (∃k′) (∀k ≥ k′)

[

v(k) ≤
1

kc

]

♦

1Notice, the length ofr must necessarily be polynomial ink.
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In other words, we will use the notationnegl(k) to say that some function of interestv(k)
(typically, the probability of Eve “breaking the system on inputs of sizek”) is less than the inverse
of any polynomial for sufficiently largek.

The reason for this choice is because negligible probability of success stays negligible after even
a polynomially many attempts to break the system: notationally,poly(k) · negl(k) = negl(k).

WHAT IS k? In algorithms,k usually denotes the “size of the problem”, which is natural for the
problem at hand. E.g., for sorting it is the size of the array to be sorted, for graph algortihms it is
the number of vertices or edges of the graph, and so on. In cryptography, most tasks usually have
many participants who take different inputs. For example, in our scenario we already had Alice,
Bob, and Eve, who all had different inputs. Despite that, for most cryptographic problems it is also
natural to define “the size of the problem”, which in cryptography is usuallycalled thesecurity
parameter. After the meaning of this parameterk is specified, technically, every value ofk defines
a different and “larger” scenario. For example, for the one-time pad cryptosystem we chosek to
denote the message size. Then, differentk’s correspond to different and “larger” cryptosystems
encryptinglonger and longer messages.

More generally, in more complex situations, once naturalk is chosen as a security parameter,
we insist that all the honest parties (like Alice and Bob) run in somefixed(probabilistic) polynomial
time in k (e.g., for the OTP case Alice and Bob where linear ink). On the other hand, Eve can run
in PPT in k, and should have at most negligible probability of breaking the system, as a function of
k. This is whyk is called the “Security parameter”, since by increasingk we get higher and higher
security (although also slightly degraded efficiency for “honest” users). Thus, there is a tradeoff in
determining the “correct” value ofk: we do not want to make it low, so that the system is secure,
but also do not want to make it unnecessarily large, so that we do not waste the resources of honest
parties if the system is already “secure” for a smaller value ofk.

So how should once choosek in practice? Well, after analyzing a given system, we hope that
we can upper bound the advantageε of Eve as a function of Eve’s running timet (say,260) and the
security parameterk. In a good cryptosystem, this function is negligible ink (e.g., perhaps decaying
like 2−k). Thus, for a relatively smallk, Eve’s advantageε will be smaller than some “acceptable”
and “unnoticeable” threshold (say,2−60). And this is precisely the valuek one chooses as a security
parameter in practice. If later thisk is too small, one increasesk to make the system more secure (at
the expense of having Alice and Bob run a bit slower). Ideally, though, one leaves enough “slack”
in the initial choicek, so that reasonable increases in computer power still leave the system secure
for decades to come!

In any event, at this stage this is a bit abstract, and we will come back to this point later, but we
summarize our discussion as follows:

• One usually does not build a single cryptosystem, but parametrizes one’s cryptosystem by a
conveniently chosen security parameterk. Then “efficient” means “polynomial ink”, and
“negligible” means “negligible function ofk”.

• Intuitively, concretek is later chosen in practice such that no attacker running in time “sig-
nificantly less” than2k has advantage significantly greater than2−k. In a good system, thisk
will still be small enough, so Alice and Bob, who run in time poynomial ink (say,O(k2)),
still run pretty fast.
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Remark 3 Finally, we mention a trivial notional convention which we will repeatedly use without
further explanation from now on. As we said, all participants are allowed to run in time polynomial
in k. But how do they “know”k? Technically, we will have to explicitly supplyk as part of the
input. However, instead of giving themk in binary, which is onlylog k bits long, we will givek
in unary, which is indeedk bits long. This is done to ensure that all our algortihms — which are
polynomial in theirinput length— are allowed to run in time polynomial in the security parameter
k. Thus, providingk in unary is a convenient way to ensure that polynomial ink time is allowed.
Notationanly,k in unary is denoted1k. Thus, when an algortihm takes this “mysterious”1k, this is
simply to explicily tell it that the security parameter is equal tok.

8 FINDING A BETTER SYSTEM

In light of these new relaxed assumptions on Eve, we must re-examine the observations we made
earlier.

1. Alice has a secret from Eve.

Clearly this observation must still hold, for the same reason given initially. Indeed, since
Alice is now PPT, Eve still has enough power to decrypt the message if the assumption was
false.

2. Bob has a secret from Eve. In fact, Alice and Bob must sharea secret not known to Eve.

This observation now does not seem to be necessarily true: if Eve is not strong, then she can
no longer resort to brute force methods to reverse-engineer Bob’s encrypted message. Indeed,
we will give strong evidence that this observation is false.

For now, though, we define two important cryptographic models, depending on whether or not we
assume the (no longer required) Observation 2 above. If we do, we comeback to the same problem
of secure communication with the shared key. This encryption setting is calledSymmetric-Key
(or Private-Key)Encryption (SKE). Since OTP is still a valid solution, but the proof of Shannon’s
theorem no longer holds when Eve is computationally bounded, the main goal of SKE is toachieve
“secure communication” with the secret keymuch shorter than the length of the messages
exchanged. We will come back to this challenging problem, but for now we discuss the newmodel,
where we no longer assume that Alice and Bob share the secret (i.e., Observation 2 is false).

9 NOT SHARING A SECRET (PUBLIC-KEY ENCRYPTION)

In fact, we will assume thatEve knows everything that Bob does.From Observation 1, Alice should
still have a secretSa (which we now denote bySK, to stand for the “secret key”) from Eve (and,
hence, from Bob as well). We also allow for some public informationPK (stands for “public
key”) available to all the parties. Notice, since Eve knows what Bob does,Eve, and in factanyone
else, can encrypt messages for Alice. However, we wantonly Alice to be able to understand them.
This encryption setting is calledPublic-Key (or Asymmetric-Key)Encryption (PKE). Since the PKE
model was impossible when Eve was unbounded, the main goal of PKE isto achieve it at all (only
later concentrating on the secondary efficiency issues).
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We now briefly compare the the SKE and the PKE. In SKE, at least an inefficient solution
(OTP) clearly exist, but the problem is that of secure key-exchange. In PKE, the solution could
not exist in the unbounded setting. However, if we are to find a solution, it will not have the key
exchange problem. Indeed, sinceanyonecan encrypt messages for Alice using her known public
key PK, Alice simply needs to publish herPK once, and does not need to meet each possible
recipient. On the other hand, the communication isasymmetric: in SKE both Alice and Bob could
send the messages to each other using the shared key, while in PKE all the messages are intended
for Alice, i.e. a new PKE structure is need for Bob to get messages. Finally,we will later see that in
practice, the solutions to SKE seem to be much more efficient than those for PKE. Thus, PKE adds
convenience at the cost of efficiency. More on this later in the course.

Since it seemed more interesting to do something that was not possible before at all, rather
than break the “Shannon barrier” for something which was principally possible, historically people
attacked the PKE first (even though we will later see that SKE is aneasierproblem in some sense).
We will follow the same historic approach for now.

10 TOWARDS PKE... TO ONE-WAY FUNCTIONS

We start by making some specific assumptions to simplify the problem as much as wecan. We start
by assuming that the encryption algorithmE is not probabilistic. As we’ll see soon, this assumption
is wrong, but it would be a good simplification for now. Also, since the public keyPK is fixed once
originally chosen, we we define a functionf(m) = EPK(m). The question is what properties
should such a functionf satisfy to yield a “reasonably good” PKE? Going though our desiderata,
we claim thatf should be:

1. Invertible: It must be possible for Alice to decrypt encrypted messages.

2. Efficient to compute: It must be reasonable for people to encrypt messages for Alice.

3. Difficult to invert: Eve should not be able to computem from the “encryption”f(m).

4. Easy to invert given some auxiliary information: Alice should restorem usingSK.

It turns out that properties 2 and 3 (easy to compute but difficult to invert)capture the main
difficulty in designing such anf . Therefore, functions satisfying just properties 2 and 3 alone
received some special treatment. Such functions are calledone-way functions(OWF’s). Adding
property 1 on top will yield the notion ofone-way permutations(OWP’s), while finally throwing
property 4 givestrapdoor permutations(TDP’s).

For syntactic convenience, in the definitions below the inputx will replace the “message”m
and the trapdoorT — the “secret key”SK. Also, poly(k) denote some polynomial function ink,
whose particular form is unimportant (as long as it exists).

DEFINITION 6 A functionf(x) is aOne-Way Functioniff there exists a polynomial time algorithm
to computef(x) and for anyPPT algorithmA (this is the adversary’s algorithm) trying to “invert”
f , we have

P (f(z) = f(x) | x ∈ {0, 1}k, y ← f(x), z ← A(y, 1k)) = negl(k)
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Namely, anyPPT A succeeds with only a negligible probability in in findinganyvalid preimagez
of y = f(x). In case whenf is also one-to-one,f is called aOne-Time Permutation. ♦

We remark that in the definition of theOWF we had to require thatA succeeds iff(x) = f(z),
rather than the “natural”x = z. This is because we did not requiref to be a permutation yet.
Indeed, if we changedf(x) = f(z) to x = z, the trivial functionf(x) ≡ 0 will trivially satisfy
the definition (why??). Of course, this problem does not arise forOWP’s, since there the condition
f(x) = f(z) is clearly equivalent tox = z (i.e. x is only preimage ofy = f(x)).

DEFINITION 7 A Trapdoor Permutationf is a OWP with the extra property that for everyn,
there exists a stringT (the “trapdoor”) of polynomial length,|T | ≤ poly(k), and a polynomial-time
“inversion” algorithmI such thatI(f(x), T ) = x, for anyx ∈ {0, 1}k. ♦

Notice, that since invertingf is hard without anything and easy with the trapdoor, it means
that it mustbe hard to compute the trapdoor (i.e., find the “secret key”). Notice, the existence
of the trapdoor seems like the essence for constructing PKE: everyone has access to the encrypting
function, but the only person possessing the “auxiliary information” has the ability to invertEPK(x)
and thus decrypt encrypted messages.

Next lecture we will see the specific number-theoretic examples of theOWF’s, OWP’s and
TDP’s, as well as try to see if they indeed suffice for solving our problem of secure communication.

Remark 4 Mathematically speaking,OWFs, OWPs andTDPs should also include aPPT key
generation algortihmGen, which, on input1k, outputs the public keyPK desribingf , and, in case
of TDPs, also the corresponding trapdoor informationT . This way we know how to practically
sample a corresponding hard-to-invert function. Also, although we will assume for now that the
message space off is {0, 1}k, in general the domain off , denotedMk, could also be generated as
part of the key generated algortihmGen, as long as one can efficiently sample a random elementx

fromMk. We will come back to this point later.
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This lecture begins with a discussion on secret-key and public-key cryptography, and
then discusses One-way Functions (OWF), and their importance in cryptography. Essen-
tially, an OWF is easy to compute, but difficult to invert. A One-way Permutation (OWP) is
an OWF that permutes elements from a set. A Trapdoor Permutation (TDP) is essentially
an OWP with certain secret information, that if disclosed, allows the function to be easily
inverted.

No OWF is known to exist unconditionally, since showing the existence of OWFs is at
least as hard as showing that complexity class P is different from NP — a long standing
open problem. However, there exists several good candidates for OWF, OWP, and TDP.
We provide such example later, but start with sample applications of general OWFs, OWPs
and TDPs. First, we will see how the assumption of the existence of OWF leads to a
secure password-authentication system. Next, we show that a widely used S/Key Password
Authentication System is secure using any OWP (but not general OWFs). Finally, we
deascribe a (very weak) public-key encryption scheme based on TDPs.

We also briefly provide (conjectured) number-theoretic candidates of a OWF, a OWP

and a TDP: Prime Product as an example of a OWF candidate, Modular Exponentiation
as an example of a OWP candidate, and RSA as an example of a TDP candidate. More
detailed introduction to number theory will be given next lecture.

Finally, we describe some criticisms regarding OWFs, OWPs, and TDPs in practical
applications, and give suggestions of how to overcome these criticisms.

1 Symmetric and Public-Key Encryption

We briefly recap these notions below.

1. Secret-Key (Symmetric-Key) Encryption

• Before the Encryption

Bob and Alice have some sort of secret key S they arranged to use in advance
that Eve does not know.

• Encryption

When Bob wishes to send Alice a plaintext message M via the Internet, Bob
encrypts M using secret key S to form a ciphertext C. (Formally, we summarize
encryption with S as ES , and say that C = ES(M).) Bob then sends C over the
Internet to Alice.

• Decryption
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Upon receiving C, Alice uses the same secret key S to decrypt C, giving her M ,
the original plaintext message. (Formally, we summarize decryption with S as
DS and say that DS(C) = DS(ES(M)) = M .)

• Eve’s Standpoint

Eve only sees C being sent over the Internet. She has no knowledge of S. Very
informally (stay tuned!), the scheme is “Secure” if it is hard for Eve to learn
about S or plaintexts based on the ciphertexts.

A more formal definition of symmetric-key encryption is given below (only syntax,
not security yet!):

Definition 1 [Symmetric-key encryption (SKE)] A SKE is a triple of PPT algorithms
E = (G, E, D) where:

(a) G is the key-generation algorithm. G(1k) outputs (S,M), where S is the shared
secret key, and M = M(S) is the (compact description of the) message space
associated with the scheme. Here k is an integer usually called the security
parameter, which determines the security level we are seeking for (i.e., everybody
is polynomial in k and adversary’s “advantage” should be negligible in k). Very
often, S is simply a random string of length k, andM is {0, 1}∗.

(b) E is the encryption algorithm. For any m ∈M, E outputs c
r← ES(m, S) — the

encryption of m. c is called the ciphertext. We usually write E(m, S) as ES(m)
(or ES(m; r), when E also takes randomness r and we wish to emphasize this
fact).

(c) D is the (deterministic) decryption algorithm. D(c, S) outputs a value m̃ ∈
{invalid} ∪M, called the decrypted message. We also usually denote D(c, S) as
DS(c).

(d) We require the correctness property:

∀m ∈M, m̃ = m, that is DS(ES(m)) = m

♦

2. Public-Key Encryption

• Before the Encryption

Alice publishes to the world her public key PK. Therefore, both Bob and Eve
know what PK is. This public key is only used to encrypt messages, and a
separate key SK is used to decrypt messages. (This is unlike the Secret-Key
scheme where one key S is used to both encrypt and decrypt.) Only Alice knows
what SK is, and nobody else, not even Bob.

• Encryption

When Bob wishes to send Alice a plaintext message M via the Internet, Bob
encrypts M using Alice’s public key PK to form a ciphertext C. (Formally, we
summarize encryption with PK as EPK and say that C = EPK(M).) Bob then
sends C over the Internet to Alice.

Lecture 2, page-2



• Decryption

Upon receiving C, Alice uses her secret private key SK to decrypt C, giving her
M , the original plaintext message. (Formally, we summarize decryption with
SK as DSK and say that DSK(C) = DSK(EPK(M)) = M .)

• Eve’s Standpoint

Unlike the Secret-Key scheme, Eve knows everything Bob knows and can send
the same messages Bob can. And, only Alice can decrypt. And, when Bob
sends his message, Eve only sees C, and knows PK in advance. But, she has no
knowledge of SK. Very informally (stay tuned!), the system is “secure” if it is
hard for Eve to learn about SK or plaintexts based on ciphertexts and PK.

A more formal definition of public-key encryption is given below (only syntax, not
security yet!):

Definition 2 [Public-key encryption (PKE)] A PKE is a triple of PPT algorithms
E = (G, E, D) where:

(a) G is the key-generation algorithm. G(1k) outputs (PK, SK,M), where SK is
the secret key, PK is the public-key, andM is the (compact description of the)
message space associated with the PK/SK-pair. As before, k is an integer the
security parameter.

(b) E is the encryption algorithm. For any m ∈M, E outputs c
r← E(m, PK) — the

encryption of m. c is called the ciphertext. We sometimes also write E(m, PK)
as EPK(m) (or EPK(m; r), when we want to emphasize the randomness r used
by E).

(c) D is the (determinstic) decryption algorithm. D(c, SK) outputs m̃ ∈ {invalid}∪
M, called the decrypted message. We also sometimes denote D(c, SK) as
DSK(c).

(d) We require the correctness property:

∀m ∈M, m̃ = m, that is DSK(EPK(m)) = m

♦

2 Primitives

We mentioned the following three primitives commonly used in Cryptography:

1. OWF: One-Way Functions

2. OWP: One-Way Permutations

3. TDP: Trap-Door Permutations

The next sections will define these primitives and give conjectured candidates of each
one (we say “candidate”, and not “example”, because the formal existence of OWF, and
consequently OWP and TDP, has yet to be proven).
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3 OWF

A function is One-way if it is easy to compute, but difficult to invert. More formally,

Definition 3 [OWF] A function f : {0, 1}∗ → {0, 1}∗ (or, a function f that maps finite
strings to finte strings) is one-way it is satisfies two properties:

1. ∃ poly-time algorithm which computes f(x) correctly ∀x. (Thus, easy to compute.)

2. ∀ PPT Algorithm A,

Pr(f(z) = y | x←R {0, 1}k; y = f(x); z ←R A(y, 1k)) ≤ negl(k)

where ←R means randomly chosen. (So x is randomly chosen from the set of k-bit
numbers, and z is randomly outputted from algorithm A when it has y as input.)
Thus, f is hard to invert. So, in polynomial time (in k) Eve has probability negl(k)
or less of figuring out any preimage of f(x).

♦
And, keep in mind that no proof derived yet shows that OWF’s exist. However, there’s

good evidence OWF’s do exist.1 And later on, candidate OWF’s will be shown.

Collection of OWFs. The above definition of a OWF is very convenient to us when
building other objects from OWFs. (In particular, we will usually use it in the homework
and exams.) However, it is somewhat inconvenient to use if we want to build OWFs in
practice. For one thing, the domain of a OWF is {0, 1}∗, which is not the case for practical
constructions. Also, the above definition does not allow one to randomly choose and publish
some public parameters which woiuld actually define a given OWF f . Finally, we see that
this definition will be hard to extend to trapdoor permutations, which we will do soon.
Therefore, in order to include practical constructions, we define a collection of OWFs (which
still suffice for all the applications of OWFs) as follows.

Definition 4 [colelction of OWF] A collection of one-way functions is given be three PPT

algorithms (Gen, Eval, Sample).

1. Gen is the key-generation algorithm. G(1k) outputs a public key PK, which implicitly
defines a domain D = D(PK) and the range R = R(PK) of a given one-way function
fPK (which we simply denote by f when PK is clear from the context). As before, k
is an integer the security parameter.

2. Eval is the (deterministic) function evaluation algorithm. Eval(x, PK) computes the
value fPK(x) ∈ R, for any x ∈ D. We usually write fPK(x), or just f(x), to denote
the output of Eval(x, PK).

3. Sample is a probabilistic algortihm, which, on input PK, samples a random element
from the domain D of fPK . We write x ← D(PK), or just x ← D, as a shorthand
for running Sample(PK).

1Those familiar with the Complexity Theory can observe that the existence of OWFs trivially implies
that P 6= NP , which is a long-standing open problem. In fact, we do not know how to prove OWFs exist
even if we assume that P 6= NP !
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With this notation, the security of a collection of OWFs is very similar to security of OWFs
defined earlier: ∀ PPT Algorithm A,

Pr(fPK(z) = y | PK ← Gen(1k); x← D(PK); y = fPK(x); z ← A(y, PK, 1k)) ≤ negl(k)

♦
As we can see, collection of OWFs allow us a bit more freedom in specifying the domain

and range of f , as well as publishing some parameter PK describing f . We will see examples
later on.

4 OWP

A function f is a OWP if it is OWF, and a permutation. More formally,

Definition 5 [OWP] A function f is OWP if:

1. It satisfies all requirements for being OWF.

2. It is a permutation (that is every y has a unique preimage x).

♦
Similarly, one can define collection of OWPs in the same manner as we defined collection

of OWFs. The only addition is that D(PK) = R(PK), and fPK must be a permutation
(be one-to-one and onto) over D(PK).

5 TDP

A function f is a TDP if it is OWP, and given certain information, f can be inverted in PPT.
More formally, one can attempt to define TDPs similar to Definition 3 and Definition 5 as
follows. A function f is TDP if (a) it satisfies the requirements for OWP from Definition 5;
and (b) There exists a poly-time algorithm I, some constant c, and a string tk (for each
k) such that, for all large enough k, the size of tk is at most O(kc), and for any x ∈
{0, 1}k, I(f(x), tk) = z where f(z) = f(x).

A moment relection, however, shows that this definition seems to be quite useless in
applications. Indeed, one may wonder what is the usage of TDPs, if nobody can find the
trapdoor information tk in polynomial time (if one could, then one would be able to invert
it, and contradict the one-wayness of f). Indeed, this observation is correct, and this is
why TDPs are only defined as a collection of functions, similarly to a collection of OWFs
and OWPs we defined earlier. Indeed, such collections have a key generation algortihm
Gen which outputs the public key SK. Now, we simply let Gen also output the trapdoor
information (which we denote SK) which would allow one to always invert a given TDP.
More formally,

Definition 6 [collection of TDP] A collection of trapdoor permutations is given be four
PPT algorithms (Gen, Eval, Sample, Invert).
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1. Gen is the key-generation algorithm. G(1k) outputs a public key PK, which implicitly
defines a domain D = D(PK) of a given function fPK (which we simply denote by
f when PK is clear from the context), and a corresponding secret (or trapdoor) key
SK.

2. Eval is the (deterministic) function evaluation algorithm. Eval(x, PK) computes the
value fPK(x) ∈ R, for any x ∈ D. We usually write fPK(x), or just f(x), to denote
the output of Eval(x, PK).

3. Sample is a probabilistic algortihm which, on input PK, samples a random element
from the domain D of fPK . We write x ← D(PK), or just x ← D, as a shorthand
for running Sample(PK).

4. Invert is a (deterministic) inversion algortihm which, on input y ∈ D and a secret
key SK computes a value z ∈ D(PK) such that fPK(z) = y. We usually write
z = f−1

PK(y), or just z = f−1(y) to denote the output of Invert(y, SK), with an
implicit understanding that f−1 is only easy to compute with the knowledge of the
trapdoor key SK.

The security of TDPs is idential to that of OWPs, where the attacker cannot invert f without
the trapdoor key SK: ∀ PPT Algorithm A,

Pr(z = x | (PK, SK)← Gen(1k); x← D(PK); y = fPK(x); z ← A(y, PK, 1k)) ≤ negl(k)

♦

6 Number-Theoretic Examples of OWF, OWP, TDP

Before you begin: If you are not very familiar with number theory, I strongly
recommend you skip this section on first reading. Indeed, the main purpose of
this somewhat dense section is to make the treatment of OWF, OWPs and TDPs a bit less
“abstract”, by giving examples we will study in more detail later. In particular, if “abstract”
is fine with you, you can move directly to the next “application” section. In other words,
the specific examples are not needed to understand the remainder of this lecture. We will
study number theory in more detail the next lecture.

As we said, we do not know how to unconditionally prove the existence of OWFs, OWPs
and TDPs. However, we have several plausible candidates. In this section we give a sample
candidate for each primitive based on number theory.2

6.1 OWF Candidate: Integer Multiplication

Let’s define a function f as f(p, q) = p ∗ q, where p and q are k-bit primes and ∗ is the
regular integer multiplication. (So, our domain is the set of pairs of k-bit primes, and

2For OWPs and TDPs, all examples that we know use number theory. For OWFs, there are many other
proposed candidates. However, we will study them a bit later in the course, concentrating on number-
theoretic examples for now.
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f : Pk ∗ Pk → X where Pk is the set of k-bit primes, and X is the set of 2 ∗ k-bit numbers
whose factorization is made up of two k-bit primes.) Clearly, f is not a permutation, but
this is fine.

Let us denote n = p ∗ q, so that f(p, q) = p ∗ q = n. Upon seeing n, there’s no known
polynomial time algorithm A such that A(n) outputs values p′ and q′ so that p′ ∗ q′ = n
(since we assume n is a product of two primes, then either p′ = p, q′ = q, or p′ = q, q′ = p).

You might think, “Hey! That’s not true! Just test all the numbers from 2 to
√

n.” And
propose a program that works like the following:

for i = 2 to
√

n do
if (i divides n) then output(i,n

i
);

And you would then claim that your program runs in time O(
√

n), which is polynomial
in terms of n. However, keep in mind that the number n inputted into this algorithm is
of magnitude roughly 22k and of length 2k. Thus, since

√
n ≈

√
22k ≈ 2k, this algorithm

runs in time O(2k), which is exponential in terms of the input size. Thus, this algorithm
runs in exponential time. And, no algorithm that’s polynomial (or even probabilistically
polynomial) in terms of k is known that can factor n.

Therefore, this function f is easy to compute and seems difficult to invert, making it a
good candidate OWF.

Conjecture 1 Integer multiplication is a OWF.

This conjecture has stood up to attempts to disprove it for a long time, and forms one
of the most common assumptions in cryptography. Usually, when we will use the above
conjecture as an assumption to prove some result X, we will say

“If factoring is hard, then X is provably true.”

Of course, this does not mean we have proven X unconditionally, but it means that
the only way to break X is to break factoring, and this seems quite unlikely given the long
history of this problem!

6.2 OWP Candidate: Modular Exponentiation

We will define the function f(x, p, g) = (gx mod p, p, g), where the explanation of the above
letters will follows shortly. Notice, however, that since p and g are “copied” through, for
convenience instead of this f we will write fp,g(x) = gx mod p (implicitly implying that
p and g are part of the randomly generated input which are also part of the output). As
we can see, in this example it is actually more convenient to use the notion of collection
of OWPs. In this case, we can say that “copied” p and g are simply part of the randomly
generated public key PK.

Let us now make some important math definitions, theorems, and observations to make
the notation above clear. As stated, these can be skipped upon first reading (also see
Lecture 3 for more extensive treatment), especially since several facts are stated without
proof here.

Momentary Detour. For any n, Zn is the set of integers from 0 to n − 1. The multi-
plicative group of Zn, Z

∗

n, is defined as:
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Definition 7 Z
∗

n = {x | x ∈ Zn ∧ gcd(x, n) = 1} ♦
So, Z

∗

n is the set of elements from Zn that are relatively prime to n. Also note that for
any n, 0 /∈ Z

∗

n. Also, note that for prime number p, Z
∗

p = Zp − {0}. This is because every
number in Zp except 0 is relatively prime to p.

Additionally, for any positive integer n, the set Z
∗

n and the multiplication operator (we
will often write ab to denote a ∗ b mod n) form a group. This is because:

1. (∀a, b ∈ Z
∗

n)[a ∗ b ∈ Z
∗

n]

2. Z
∗

n has an identity element, which is 1. This is because (∀a ∈ Z
∗

n)[a ∗ 1 = 1 ∗ a = a]

3. (∀a ∈ Z
∗

n)(∃a′ ∈ Z
∗

n) such that a ∗ a′ = a′ ∗ a = 1. (I.e., every element in Z
∗

n has
an inverse.) This is because for every a ∈ Z

∗

n, gcd(a, n) = 1. Therefore, there exist
integers a′, n′ such that:

aa′ + nn′ = 1 ⇒ aa′ = 1 + n(−n′) ⇒ aa′ ≡ 1 mod n

(And, do keep in mind that this fact isn’t always true if we were to deal with elements
in Zn.)

Fermat’s little theorem states that:

Theorem 2 (Fermat’s Little Theorem) For any prime p and x ∈ Z
∗

p, xp−1 = 1 mod p

Also, for some arbitrary a ∈ Z
∗

p, the smallest x where ax = 1 mod p is referred to as
the order of a in Z

∗

p. (And, there may be elements in Z
∗

p with order less than p − 1. For
example, if p is a prime larger than 3, then (p − 1)2 = (−1)2 = 1 mod p, so the order of
p− 1 in Z

∗

p is 2, and 2 < p− 1 when 3 < p)
And, also note the following number theory theorem.

Theorem 3 (Number Theory Fact) When p is prime, Z
∗

p has at least one element g
with order p− 1.

And, elements in Z
∗

p with order (p− 1) are commonly referred to as primitive elements
or generators.3 Notice that {g1, g2, ..., gp−1} = Z

∗

p. So, raising g to powers ranging from 1
to p− 1 (or 0 to p− 2, since gp−1 = 1 = g0 mod p) “generates” all the elements in Z

∗

p.

Coming back to OWPs. As a result of all these condensed definitions, we can revisit our
function fp,g where fp,g(x) = gx mod p. Here p is a k-bit prime, g is a generator of the set
Z
∗

p, and x ∈ Zp − {0} is the actual input.
We now justify why we believe that fp,g is a OWP. First, since g is a generator, our

function could be viewed as a permutation from Zp − {0} = Z
∗

p to Z
∗

p. Second, we claim
that computing y = gx mod p could be done in polynomial time as follows. Assuming p has
k bits, for any arbitrary x ∈ Z

∗

p, we can find fp,g(x) as follows:

3The origin of the term “primitive element” is puzzling. For example, it is certainly non-trivial to show
that primitive elements exist in Z

∗

p, as stated by the above theorem.
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1. Compute g2i

mod p for every value of i from 0 to log2(p), which involves repeated
squaring, and takes Θ(k) multiplications.

2. Look at the binary expansion of x, which might look like: 10011 . . ., and note that
x = 2k−1bk−1 + . . . + 21b1 + 20b0 where each bi represents a binary digit in x.

3. By plug-in, since

gx = g2k−1bk−1+...+21b1+20b0 = g2k−1bk−1 · · · g21b1g20b0 = (g2k−1

)bk−1 · · · (g21

)b1(g20

)b0

and each g2i

mod p has already been found, and each bi is either 0 or 1, then each
(g2i

)bi term modulo p has a known value (either g2i

or 1), and computing the product
of all the (g2i

)bi terms modulo p to give gx is doable in O(k) multiplications.

Overall, we get O(k3) algorithm. Therefore, fp,g(x) is easy to compute. The inversion
problem corresponds to finding x s.t. gx = y mod p, when given g, p, y as inputs. This is
known as the Discrete-Log Problem which is believed to be very hard. Therefore, fp,g is
believed to be hard to invert. Because of fp,g is easy to compute, believed to be hard to
invert, and definitely is a permutation, fp,g makes a good candidate OWP. Unfortunately,
there’s no known trapdoor information that can make inverting f easy (which would make
it a TDP).

Conjecture 4 Modular exponentiation is a OWP.

Similar to factoring, this conjecture has stood up to attempts to disprove it for a long
time, and forms one of the most common assumptions in cryptography. Usually, when we
will use the above conjecture as an assumption to prove some result X, we will say

“If discrete log is hard, then X is provably true.”

6.3 TDP Candidate: RSA

An RSA function is defined as f(x, n, e) = xe mod n. As before, we write for convenience
fn,e(x) = xe mod n, where n is the product of two primes p and q, x ∈ Z

∗

n, e ∈ Z
∗

ϕ(n).

Now for a bit more number theory. (The fun never stops!)

Definition 8 [Euler phi-function] For any positive integer m, ϕ(m) is the number of pos-
itive integers less than m that are relatively prime to m. ♦

As you might have guessed, for any positive integer m, the number of elements in the
set Z

∗

m is ϕ(m). For any prime p, ϕ(p) = p− 1, since there are p− 1 positive integers less
than p, and they’re all relatively prime to p. Additionally, if n = pq where p and q are
primes, then, ϕ(n) = (p− 1) ∗ (q − 1) = n− (p + q − 1).

Now for Euler’s Theorem, which is more general than Fermat’s Little Theorem (men-
tioned earlier).

Theorem 5 For any positive integer m and any a ∈ Z
∗

m, aϕ(m) = 1 mod m.
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Now note that for our RSA function f , we have e ∈ Z
∗

ϕ(n). This is to make sure that e

is relatively prime to ϕ(n), so that there exists a d ∈ Z
∗

ϕ(n) such that ed = 1 mod ϕ(n), so

that for our fn,e(x) = xe mod n, we can get x back by doing

(xe)d = xed = xed mod ϕ(n) = x1 = x mod n

And, assuming c = fn,e(x) = xe mod n for some value x, and d is the inverse of e
modulo ϕ(n) for the rest of this section, note that then since x ∈ Z

∗

n, and Z
∗

n with the
multiplication operator is a group (for reasons mentioned earlier), then x raised to any
power is also an element of Z

∗

n. Therefore, c ∈ Z
∗

n. And so, fn,e : Z
∗

n → Z
∗

n, so f is a
permutation function.

And in our RSA function f and values x and c, we assume that n, e, and the method for
obtaining fn,e(x

′) for some value x′ is public; but the x value that yields c, the primes p and
q that make up n, and the value d that would give x from c (since cd = (xe)d = x mod n)
are all private information.

Notice how things differ here for f in RSA compared to the f used in the modular
exponentiation section (in spite the fact that they both involve modulus exponentiation).
With the modular exponentiation section, the exponent is secret and the base is public,
whereas in RSA, the base is secret and the exponent is public.

And, assuming n is a k-bit number, (and therefore, so is x and e), from an arbitrary
x, fn,e(x) = xe mod n can be computed in time polynomial in terms of k, for reasons
mentioned in the Modular Exponentiation section. Therefore, fn,e is easy to compute.

We also notice that the best known way to invert RSA involves factoring n into its
primes (which allows one to learn ϕ(n), which allows one to figure out a d, and therefore
get x from c, as mentioned earlier), and this is believed to be hard to do (no PPT algorithm
known for it yet). In particular, other common methods for inverting fn,e, like finding out
ϕ(n) or d directly have been shown to be just as hard as factoring n. Therefore, f is believed
to be hard to invert.4

Additionally, since we just argued that inverting RSA is easy with either the factorization
on n (or the value d above), RSA is a good TDP candidate.

Conjecture 6 RSA is a TDP (family).

7 Things to Consider

After seeing all this info on OWF, OWP, and TDP. Here are three important principles in
Cryptography to consider.

1. Cryptography based on general theory

There are plenty of candidates for OWF, OWP, and TDP with believed hardness
to invert based on differing reasons. Therefore, even if we figure out how to easily
compute the prime factorization of any number (which for example will break RSA
as a TDP candidate), we can still use something else as a candidate. Thus, there

4Even though breaking RSA is believed to be slightly easier than breaking factoring, RSA resisted many
attacks and believed to be very hard to invert too.
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are a lot of merits in basing cryptographic constructions on such general primitives
like OWF’s, OWP’s or TDP’s. Not only this gives us protection against breaking some
specific function believed to be OWF, etc., but also allows us to distill which properties
of a given function are crucial to make the construction work.

2. Cryptography based on specific function assumptions

Sometimes, we can get more effective schemes if we assume certain function properties,
like if f(a) ∗ f(b) = f(a + b) (which is true with the function f used in the Modular
Exponentiation section). Thus, for the purposes of efficiency and simplicity, schemes
based on specific functions are also extremely useful in practice. Of course, these
constructions are also less general than general constructions.

3. Specific things give rise to actual implementations

Finally, even implementing general constructions using specific candidates gives rise to
the actual real-life systems, showing ho our general theory can be applied in practice.

In the next section we return to OWFs, OWPs and TDPs, and give a sample general
application for these concepts.

8 Application of OWF’s: Password Authentication

Assume I wish to login to a server with my password x, but I don’t want my server to store
x, since the server’s contents might be open to the world. (An in fact, in one of my previous
jobs, the server not only stored passwords, but did so in a text file that was marked public
to the world... oops!)

To solve this issue, I compute f(x) = y where f is OWF, and I tell the server only about
y and f . (So the server doesn’t store x.) When I login, I give the server z, and the server
checks if f(z) = y. Since f is OWF, a hacker can’t figure out a z such that f(z) = y easily
(since f being OWF implies that any algorithm A where A(y) → z and f(z) = y doesn’t
run in PPT), so this system is secure.

However, some problems do occur:

1. How can we be sure x is uniform?

Too many times, we pick passwords based on our login name, real name, birthday,
family, friends, the new fancy word used by George W. Bush, etc. Or we pick pass-
words based on dictionary words, or our passwords are simply too short in length. (A
hacker can easily write a program to guess all four-character password combinations
until it gets a correct one.) Thus for many, x is not truly randomly chosen and might
be easily found.

Turns out, there are tools (called commitment schemes, extractors and password-
atuhenticated key exchange) to somewhat overcome this problem. Except for com-
mitments, we will not have time to talk about them in this course though.

2. Although x is not stored on the server, how can we trust that a hacker never sees x?
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For example, if I connect to this server via telnet, Eve can run a program to identify
myself, snoop onto my session, and read the text of everything I type during this
session. From this, she can figure x based on what I typed. One way to overcome this
is to use ssh (secure shell), because ssh encrypts the text that I type before it is being
sent over the Internet. Therefore, Eve’s snooping will only get her an encryption of
the text I typed, and she’s forced to attempt and decrypt in order to get x. Thus ssh
is much safer than telnet, and is the reason why various companies only allow people
to connect remotely via ssh and not telnet. However, there might exist ways snoop
the password by other ways, so even this also isn’t a perfect solution.

It turns out there are advanced techniques (called identification schemes, zero-knowledge
arguments, and proofs of knowledge) which will solve this problem as well. In the next
section we will present a much simpler simple way to partially solve this problem.

However, assuming a hacker can only see the server’s storage y, cannot see typed pass-
word x, and assuming that x is truly randomly chosen, we immediately see that the password
system mentioned earlier is secure assuming OWF’s exist.

9 Application of OWP’s: S/Key System

Taking the notion of password authentication a step further, let’s suppose that a server
keeps track of T logins you make onto it, and changes the information it stores every time
you login, and what you’d have to type to authenticate yourself will also keep changing
accordingly. (This would prevent a hacker from getting being able to impersonate you after
snooping one of your authentications.) Here is the way to do it. Take a random x, and
compute for each i from 0 to T , yi = fT−i(x) (so yi = f(f . . . f(x) . . .)) applied (T − i)
times) where f is OWP. Notice, being a permutation ensures that we can apply f to itself
many times. We give the server only the last result y0 (and the public function f), and
nothing else. Note y0 = fT (x).

Then, the first time we login, the server asks for y1, and will check if y0 = f(y1). If we
correctly give it y1 where y1 = fT−1(x), then the server replaces y0 with y1.

The next time we login, the server will ask for y2, and will check if y1 = f(y2). Correctly
giving y2, where y2 = fT−2(x), will make the server replace y1 with y2.

And so on, until the T -th login, where the server asks for yT , and checks if yT−1 = f(yT ).
Correctly giving yT , where yT = fT−T (x) = f0(x) = x, ends the chain of T logins, and we
will have to start this process over (i.e., we give the server a new set of y0 and f and redo
this).

Notice that in the process described above, we start with y0 = fT (x). And, for each i,
yi = f(yi+1), therefore, yi+1 = f−1(yi), so we’re inverting f once at each step to get the
next correct yj value (which the server stores for next time, and the server and hackers
can’t figure out any inverse until you type it in). And, we start over once we end up giving
x to the server.

Notice here that after each login, the server not only changes the value it stores, but
stores the value you just entered, so the server (and the hacker) is always “a step behind”.
While the S/Key system intuitively seems secure, let us actually proof this formally! We
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first need to learn learn about general T -time password authentication systems... Later we
will show that S/Key is indeed such a system.

Definition 9 [T -time Password Authentication System] A T -time Password Authentica-
tion System is a T -period protocol between the PPT server and the PPT user. First, given
the “security parameter” k, the user and the server engage in the private setup protocol
(which runs in time polynomial in k), after which the user has some secret information
SK, and the server has some public information PK. From now on, all the server’s storage
(which is initially PK) is made public, and the user and the server now engage in T login
protocols. After each such protocol, the server decides whether to accept or reject the user.
We require the following:

1. If the server talks to the real user (who knows SK and is honest), the server must
accept that user during any of the T logins.

2. For any number of logins t, even if a hacker sees information the user uses to login
to the server from his previous (t− 1) logins (in addition to the server’s storage), the
Probability that the hacker can impersonate the user’s t-th login is at best negl(k),
where k is the security parameter (here roughly size of the data the hacker needs to
guess).

More formally, any t < T and any PPT A, the probability that the server accepts A
at t-th login is negl(k). The latter probability is taken over the randomness used to
setup the system, the randomness used by the user to login the first (t− 1) times, the
possible randomness of the server to verify all the logins, and the randomness of A.

♦
It sounds like the S/Key system might be a good example of a T -time Password Au-

thentication System. In fact it is, but only if the f used is OWP. (Just having f being OWF

isn’t good enough. See the homework...) Now, let’s prove that if f is OWP, S/Key is a
T -time Password Authentication System.

Theorem 7 ∀ OWP f , S/Key is a T -time Password Authentication System.

Proof: Assume there’s some OWP f such that S/Key is not secure. We’ll show that this
assumption leads to the fact that f is not OWP, which is a contradiction.

Since S/Key is not secure for this f , there is some period t and some PPT A that achieve
the following. Let x ← {0, 1}k be chosen at random in the setup phase, let yi = fT−i(x)),
so that the server stores y0. Seeing first (t − 1) logings of the real user together with
the server’s storage gives A exactly y0, . . . , yt−1. A success for A at time t means that
A(yt−1, . . . , y0) → y′t and f(y′t) = yt−1. Since f is a permutation, success means that
y′t = yt. To summarize, the assumption that S/key is insecure at time period t implies:

Pr[ y′t = yt | x← {0, 1}k, yi = fT−i(x), ∀ 0 ≤ i ≤ T, y′t ← A(yt−1, . . . , y0) ] = ǫ (1)

where ǫ is non-negligible.
With this in mind, we construct a new PPT adversary Ã who will invert OWP f with

non-negligible probability (actually, the same ǫ). Ã will be given ỹ = f(x̃), where x̃ was
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chosen at random from {0, 1}k. The goal of Ã(ỹ) is to come up with x̃. Naturally, Ã will
use the hypothetical A to achive this (impossible) goal. Specifically,

Ã: On input ỹ run z ← A(ỹ, f(ỹ), . . . , f t−1(ỹ)) and output z.

In other words, Ã “fools” A into thinking that ỹ was the password yt−1 at period (t−1), f(ỹ)
was the password yt−2 = f(yt−1) at period (t− 2), and so on. Notice, since computation of
f is poly-time and A is PPT, Ã is PPT as well. Also, since f is a permutation and both x
and x̃ were chosen at random, the distribution

D0 = 〈fT−t+1(x), . . . , fT (x)〉 = 〈yt−1, . . . , y0〉

really expected by A in (1), is the same as the distribution

D1 = 〈f(x̃), . . . , f t(x̃)〉 = 〈ỹ, . . . , f t−1(ỹ)〉

which A received from Ã. Thus, our Ã will succeed in finding the preimage of ỹ (which
is necessarily x̃) with the same probability ǫ that A find the preimage of yt−1. But this
violates the definition f being hard to invert. So f is not OWP, and we get a contradiction.

10 Application of TDP’s: Weak Public-Key Encryption

This is our original motivation to study TDP’s. Namely, define the following public-key
“encryption” scheme. The quotes are due to the facts that the encryption achieved will
only satisfy a truly minimal (and insufficient) notion of security. Still, it is a good start.

The public key PK will be the description of the TDP f itself (i.e., the public key output
by the TDP key generation algortihm Gen). The secret key SK will be the corresponding
trapdoor information output by Gen that makes f easy to invert. To encrypt m, Bob sends
Alice c = f(m). Alice decrypts c using the trapdoor SK.5 The security of TDP’s says that
f is hard to invert if m is random in {0, 1}k (more generally, whatever the domain of f is).
Thus, the only thing we can say about this encryption is that Eve cannot completely
decrypt encryptions of random messages. This is a very weak notion, also called
“one-wayness”, but for encryption!

Definition 10 An encryption scheme (G, E, D) is one-way secure, if ∀ PPT Algorithm A,

Pr(m′ = m | (PK, SK)← G(1k); m←M; c← EPK(m); m′ ← A(c, PK, 1k)) ≤ negl(k)

♦
Now, it is trivial to see that

Lemma 1 If f comes from a TDP family, then the above encryption scheme is one-way.

Unfortunately, one-wayness is only a very weak security notion for encryption. For
example, one-wayness does not ruled out the following:

5More formally, we can define encryption scheme (G, E, D) using TDP collection (Gen, Eval, Sample, Invert)
by letting G = Gen, EPK(m) = Eval(m, PK) (here m belongs to the domain of the TDP, which we assume
is {0, 1}k for simplicity), DSK(c) = Invert(c, SK).
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• Maybe Eve can get most of the message m (but not all of it). Say, Eve might get half
of the message. To see that this threat is actually possible, take any great TDP f ′.
Define f(x1, x2) = (f ′(x1), x2), where |x1| = |x2| = k/2. It is very easy to see that f is
a TDP such that the “encryption” of m = (x1, x2) reveals half of the bits of m (namely
x2). This is a contrived example, but even for “natural” f ’s (like RSA) it turns out
we can get some information about m from f(m). In fact, one such “information” is
the value f(m) itself!

• Nothing is said if m is not random. For example, if an army base uses encryption
to communicate with a mobile unit, and the only two messages the base will tell the
unit is “attack” or “retreat,” then the enemy unit can compute the values for f(m)
when m is “attack” or “retreat,” and based on these values, figure out m from the
ciphertext c.

Thus, this encryption leaves much to be desired, but is a non-trivial start.

11 Criticisms against OWF, OWP, TDP

Motivated by the above and the previous example, we can put forward the following criticism
to the notions of OWF, OWP, and TDP:

1. When input x is not random, how can we be sure the system is secure?

See the “attack”/”retreat” example above for the demonstration. (I.e., if x can only
be a few values, we can compute the f -map for all these few values, and use this to
learn x). It turns out that this issue can be solved. Essentially, we will design our
application so that x is always chosen at random! We will see how this is possible on
later examples.

2. Viewed an as “encryption”, the function f could reveal a lot of partial information
about x. See the pathological example of f(x1, x2) = (f ′(x1), x2) above. More realis-
tically, take the Modular Exponentiation candidate example earlier, where fp,g(x) =
gx mod p = y. It turns out that from y, the last bit of x can be efficiently extracted,
despite the hardness to extract the entire x. (I.e., we can determine if x is even or
odd). A proof of this will be shown on the next lecture.

12 Ways out of the Criticism against OWF, OWP, and TDP

But alas, there are few twists we can try in order to avoid the criticisms mentioned above...

1. One way is to design an encryption function f(x) hide all info about x. Unfortunately,
this is exactly our goal of designing secure encryption! Thus, we came back to where
we started. A new idea is needed to break out! Notice, however, that it is clear that
no deterministic f can achieve this goal (see the “attack”/”retreat” example again;
more trivially, f(x) is “information” about x). Thus, we know that such f must be
probabilistic!
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2. If x is only a few values, we can create a function g(x) = f(x, t) = z where t is
a counter increased by 1 each time a new message is sent. The German ENIGMA
machine during World War II used a technique like this. Fortunately, this had bad
consequences for the Germans.6 Unfortunately, while useful in practice, this technique
lacks formal justification, at least in this simple way. Indeed, if x is not random, (x, z)
is not random as well, so we still cannot use our definitions. More importantly, f(x, z)
might still allow one to recover most (if not all) of the bits of x.

3. How about requiring f(x) to “completely hide” information about some function h(x).
In other words, standard definition tells us that f(x) does not allow the hacker to get
x completely, but may allow to get a lot of partial information about x. So maybe
we can pin-point some partial information h(x) (i.e., whether x is even or odd) which
still remains completely hidden from the adversary who knows f(x). In other words,
f(x) does not allow the adversary to learn anything about h(x). Put yet differently,
use f(x) to “encrypt” h(x)!!! We will see, this is exactly out golden way out...

6This shows that sometimes cryptographic ignorance could be of use to the humanity. Hopefully, this
argument is outdated by now: ignorance should never be good!
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This lecture mainly discusses some basic facts about Z, Zp, Zn. Special interest is given to
the computational complexity of various operations defined on these sets. In Z, we explain
the extended Euclid algorithm in detail, which finds its application along the way. In Zp, we
study the existence and computational complexity of finding inverses, exponential, discrete
log, solving various polynomial equations and extracting square roots. In Zn, Chinese
Remainder theorem is discussed, which enables to reduce many problems from Zn to Zp.
Several candidate OWFs are presented along the way, including factoring, discrete log, RSA
and modular squaring.

1 Facts in Z

Recall, Z = {0,±1,±2, . . .}, Z+ = {1, 2, . . .}, and a|b means that a divides b. The following
Lemma is well known.

Lemma 1 Addition, multiplication in Z can be done in polynomial time (with respect to
length of operands). Moreover, for any a > b > 0 one can find in polynomial time unique
τ and 0 ≤ q < b such that a = τb + q. On the other hand, exponentiation exp(a, b) = ab

cannot be perfoprmed in polynomial time.

The latter part follows since if a = b = 111...1 (k-bit long), then ab is roughly 1
2k · 2k bit

long, so it is even impossible to write the answer down!

Definition 1 [GCD] For a, b ∈ Z+, define gcd(a, b) := max{d ≥ 1 : d|a and d|b}. ♦

Proposition 2 gcd(a, b) = inf{aũ + bṽ > 0 : ũ, ṽ ∈ Z}.

It will be proven as a special case of the Theorem below.

Theorem 1 (Extended Euclid Algorithm) Given a, b, one can compute in polynomial
time the value gcb(a, b). Moreover, in polynomial time one can find integers u and v such
that gcd(a, b) = au + bv.

Proof: Without loss, we assume that a > b > 0. Assume that b is k-bit long and let b = q0.
We carry out division in Z.

a = bτ1 + q1, 0 ≤ q1 < b (1)

It is easy to verify that gcd(a, b) = gcd(b, q1). Now iterate:

b = q1τ2 + q2, 0 ≤ q2 < q1 (2)

and so on. We stop when we get qs+1 = 0. Then
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gcd(a, b) = gcd(b, q1) = gcd(q1, q2) = . . . = gcd(qs−1, qs) = qs (3)

We only need show that s is bounded by polynomial of k.
We claim that for any i, qi ≥ 2qi+2.

1 Indeed, either we right away have qi ≥ 2qi+1 ≥
2qi+2, or otherwise qi ≥ qi+1 + qi+2 ≥

qi

2 + qi+2, so that anyway qi ≥ 2qi+2. Thus every two
iterations qi decreases by a factor greater than 1, i.e. we are done after a linear number of
iterations.

Example. Say, a = 14, b = 10. Then 14 = 1 · 10 + 4, 10 = 2 · 4 + 2, 4 = 2 · 2 + 0. Thus,
gcd(14, 10) = 2. Moreover, going back from the next-to-last equation to the first equation,
we get

2 = 10− 2 · 4 = 10− 2 · (14− 1 · 10) = (−2) · 14 + 3 · 10

so u = −2, v = 3.

Now we briefly discuss the primes.

Theorem 2 (Prime Number Theorem) When k is large enough, there are roughly 2k

k
primes in [1, 2k] (up to some small constant factor).

From this theorem, we know that for some constant c,

Pr[random k-bit integer is prime] ≈
c

k

Thus, after linear number of trials we expect to sample a prime number. Can we test
if a given number n is prime? It turns out the answer is yes. There are many efficient
probabilistic primality tests (such as Miller-Rabin or Solovay-Strassen), and, recently, even
a (slower) deterministic primality test (called AKS after Agrawal, Kayal and Saxena) was
found. Thus,

Theorem 3 One can test in polynomial time if a given k-bit number n is prime. Hence,
one can sample a random k-bit prime in expected polynomial time.

On the other hand, given two random k-bit primes p and q, we do not know how to
compute p and q from their product n = pq in probabilistic polynomial time (in k). This is
the famous factoring problem. It is widely believed that

Conjecture 4 Integer multiplication of two random k-bit primes is a OWF.

1A slightly trickier analysis shows in fact that qi ≥
√

5+1

2
· qi+1.
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2 Facts in Zp

Zp = {0, 1, 2, ...p − 1}. We can define addition and multiplication modulo p. It is well
known that both of these operations are commutative and associative. Moroeover, addition
forms a group with identity 0 and inverse (−a) defined as p − a. We can also define the
multiplicative subgroup Z

∗
p = {a ∈ Zp | gcd(a, p) = 1}. It is easy to see that Z

∗
p is closed

under multiplication, has identity 1, and the existence of the inverse is easily derived from
the Extended GCG algortihm (Theorem 1). Indeed, take any a ∈ Z

∗
p. Since gcd(a, p) = 1,

there exists u, v, such that au + pv = 1. Then a · u ≡ 1 mod p. So (u mod p) is the needed
inverse of a.

Example. For example, gcd(5, 11) = 1 and 1 = 11 − 2 · 5. Thus, 5−1 mod 11 ≡ −2 ≡ 9.
Indeed, 9 · 5 mod 11 ≡ 45 mod 11 = 1.

For the remainder of this section, we will be interested in a special case when p is prime.
In this case, Z

∗
p = {a ∈ Zp | gcd(a, p) = 1} = {1, . . . , p− 1} has all (p− 1) of Zp’s non-zero

elements, and every element a in Z
∗
p has a unique multiplicative inverse u ≡ a−1 mod p (i.e.

u satisfying au ≡ 1 mod p). Mathematically speaking, this means that

Fact 5 Zp is a field if p is prime.

Next, we mention the famous Fermat’s little theorem.

Theorem 6 (Fermat) For any a ∈ Z
∗
p, ap−1 ≡ 1 mod p, and thus, for integers a, b,

ab mod p ≡ (a mod p)b mod (p−1)(modp)

Proof: The result follows from the Lagrange’s theorem that the order of every element in
a finite group (in this case Z

∗
p) divides the size of the group (in this case p− 1). Recall, the

order of a is the smallest integer i > 0 s.t. ai ≡ 1. Since any such i divides (p− 1), we get
ap−1 ≡ (ai)(p−1)/i ≡ 1 mod p.

Example. 5842 mod 11 ≡ (58 mod 11)42 mod 10 ≡ 32 mod 11 = 9.

Getting to the computational side, it is easy to see that addition, multiplication can be
done in polynomial time (with respect to bits of p). In contrast to Z, we have

Theorem 7 exp : a, b 7→ ab mod p can be done in polynomial time, with respect to bits
lengths of a, b, p.

Proof: Denote k is the bits length of p, and by Fermat’s theorem assume that a, b ≤ p are
k-bit as well (if needed, replace a by a mod p and b by b mod (p− 1)). Now we can use the
repeated squaring technique,

a
Pk−1

i=0
bi2

i

= (a)b0 · (a2)
Pk−1

i=1
bi2

i−1

= (a)b0(a2)b1(a4)
Pk−1

i=2
bi2

i−2

= . . .

= (a)b0(a2)b1(a4)b2 . . . (a2k−1

)bk−1

Now it is easy to see the computing time is bounded by O(k3), since it takes O(k2) time
to square in Zp, and we need to do k repeated squarings to successively compute (a2i

mod p)
for all 1 ≤ i < k.
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Next, we already observed that finding inverses can be done in polynomial time as well.
As a simple generalization,

Proposition 3 Linear system in Zp can be solved in polynomial time.

More importantly, it is known that

Theorem 8 Z
∗
p is a cyclic group, which means that ∃g ∈ Z

∗
p, such that Z

∗
p = {1, g, g2, ..., gp−2} =

{1 . . . p− 1}. Any g as above is called a generator of Z
∗
p.

In other words, (p−1) successive powers of such g “generate” — without repetition and
exactly once — all the elements of Z

∗
p. From this theorem, we see that Fermat’s theorem

cannot be improved by replacing p− 1 by a smaller number.

Example. 3 is a generator of Z7, while 2 is not. Indeed, {30, 31, 32, 33, 34, 35} = {1, 3, 2, 6, 4, 5} =
{1, 2, 3, 4, 5, 6}, while 23 ≡ 1 mod 7.

How many generators does Z
∗
p have? Is it easy to find some? Is a random element

likely to be a generator? Let us begin to answer such questions. Jumping ahead, for any
(not necessarily prime) integer n define ϕ(n) = |{a ∈ Zn | gcd(a, n) = 1}|. Notice, for the
prime p, ϕ(p) = p − 1 = |Z∗

p|. Also, it is relatively easy to show by counting that for any
n, ϕ(n) ≥ n/ log log n. Now fix any generator g in Z

∗
p and take any y ∈ Z

∗
p. Let us write

y = gx, for some x (we can do it since g is a generator). Then

y is not a generator ⇐⇒ yb = 1 for some 0 < b < p− 1

⇐⇒ gbx = 1 for some 0 < b < p− 1

⇐⇒ bx ≡ 0 mod (p− 1) for some 0 < b < p− 1

⇐⇒ gcd(x, p− 1) > 1

Thus, we get a characterization of when y is a generator in terms of the discrete log of y
base g. In particular,

Theorem 9 The number of generators of Z
∗
p is ϕ(p− 1) ≥ p

log log p .

The above proof suggests a plausible way to pick a generator: simply sample it at
random from Z

∗
p. Unfortunately, we do not know of an efficient way to test if a given y is

a generator, given only p alone. On other other hand, we claim that it is easy to test if
y is a generator given a factorization of p − 1. Indeed, assume (p − 1) =

∏t
i=i q

αi

i , where
qi are all prime. Notice, as all qi ≥ 2, 2k+1 > p ≥ 2t, so t ≤ k. From Lagrange theorem,
the order of y must divide (p − 1), and is strictly less than (p − 1) if and only if y is not
a generator. But then the order must divide at least one of “most immediate divisors”
(p− 1)/q1, . . . , (p− 1)/qt. Thus,

y is not a generator ⇐⇒ ∃ 1 ≤ i ≤ t such that y(p−1)/qi ≡ 1 mod p

Example. If p = 7, p − 1 = 6 = 2 · 3, so y is a generator if and only if y2 mod 7 6= 1 and
y3 mod 7 6= 1. Then, 3 is a generator since 32 and 33 are different from 1 modulo 7, while
2 is not, since 23 mod 7 = 1.
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And since t ≤ k and exponentiation can be done in polynomial time as well, we can test
if a given y is a generator in polynomial time given the factorization of (p − 1). Luckily,
it turns out that we can sample a random k-bit number v together with its factirization
(famous result due to Bach and simplified by Kalai). By picking such v = p− 1 at random,
testing if p = v + 1 is a prime, then picking a random g ∈ Zp and using the factorization of
v = (p− 1) to test if g is the generator, we get

Theorem 10 (Bach,Kalai) ∀ k ≥ 1 there is a PPT sampling algorithm that returns:

• A random k-bit prime p.

• A random generator g of Z
∗
p.

• Complete factorization of (p− 1) (this can be useful sometimes).

We now study the quadratic equations x2 ≡ a mod p in Zp.

Proposition 4 ∀a 6= 0, the equation below either zero or exactly two solutions x. In the
latter case the two solutions are of the form ±w for some w ∈ Z

∗
p.

x2 = a mod p (4)

Proof: If x2 = a, then (−x)2 = a as well. Notice, since p is an odd prime and x 6= 0,
x 6≡ −x mod p (or precisely: x 6= p − x over integers). Thus 1 root is impossible. Also, if
x2 = y2 mod p, then (x− y)(x+ y) = 0, so x = ±y, so more than 2 roots are impossible.

Definition 2 a ∈ Z
∗
p is called QR (Quadratic Residue) iff x2 = a has two solutions. ♦

We seek characteristic of QR.

Lemma 5 Suppose g is generator of Z
∗
p, a ∈ Z

∗
p and a = gz. Then

a is QR ⇐⇒ z is even ⇐⇒ a
p−1

2 ≡ 1 mod p

Proof: If z = 2w is even then a = gz = (gw)2 is QR. Conversely, if a = (gw)2 is QR, then
z = 2w mod (p− 1). Since (p− 1) and 2w are even, so is 2w mod (p− 1).

For the second part, if z = 2w is even then a(p−1)/2 = g(p−1)w = 1 mod p, by Fermat’s
theorem. Conversely, if (gz)(p−1)/2 = 1 and since g is a generator, then z ·(p−1

2 ) ≡ 0 mod (p−

1), which means that z · (p−1
2 ) = w(p−1) (over integers for some integer w), so that z = 2w

is even.

As corollary, we find that exactly half of Z
∗
p elements are QR. The last result also inspires

us to introduce

Definition 3 [Legendre’s symbol] Suppose p is prime, and a ∈ Z
∗
p. Define Legendre’s

symbol
(

a
p

)

= a
p−1

2 mod p. ♦

Notice, by Fermat’s theorem,
(

a
p

)2
≡ 1 mod p, i.e.

(

a
p

)

∈ {1,−1}. So we can rephrase

the above result as: a is QR iff a’s Legendre symbol is +1.
Note that the definition itself gives us an efficient way to compute Legendre symbol

(apply the repeated squaring technique). As the result, it is easy to verify if a is QR in Z
∗
p.

What’s more,
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Theorem 11 if p is prime, then x2 ≡ a mod p can be solved in PPT.

Note that we have a very simple explicit solution x = ±a
p+1

4 mod p if p ≡ 3 mod 4
(why?). When p ≡ 1 mod 4, things are slightly more complicated, but again can be done
in polynomial time. In fact, algebraic equation of degree d in Zp can be solved in PPT (in
d). We don’t give proof here.

Example. Say, we try to solve x2 = 2 mod 7. First, 2 is QR iff
(

2
7

)

= 1, which is true

since 2(6−1)/2 mod 7 = 1. Next, as 7 ≡ 3 mod 4, the solutions are ±2(7+1)/4 = ±22 mod 4 =
{3, 4}. Indeed, 32 mod 7 ≡ 42 mod 7 = 2.

We would also like to mention a simple special case which can be solved efficiently: the
equation xe = 1 mod p, where gcd(e, p − 1) = 1. In this case, we can find d, v such that
ed + (p − 1)v = 1 by extended Euclid algorithm. It is easy to verify that xe ≡ a mod p
has a unique solution x = ad mod p (why?). Thus, “RSA function” is easy over the primes.
(Unfortunately, the above technique does not work for quadratic equations, since (p− 1) is
even, and so gcd(2, p− 1) = 2.)

Up to now, all the computation can be efficiently done in Zp. It is not always true. For
example, computation of the discrete logarithm as below.

Definition 4 [Discrete Logarithm] For x, a, we let the discrete logarithm (DL for short)
of x to be any y satisfying ay ≡ x mod p. ♦

It is a widely held belief that DL is computationally hard, especially when the “base”
a is a generator g of Z

∗
p. Notice, in the latter case there a unique solution x ∈ Zp−1. More

formally,

Conjecture 12 gx mod p is believed to be a one-way permutation from Zp−1 to Z
∗
p,

2 when
p is a random k-bit prime, and g is a random generator of Z

∗
p.

3

Remark 1 Why should we choose k-bit prime p at random? Well, although discrete log is
believed to be hard for most primes p, it is certainly not hard for all p. For example, a very
conveneint choise of prime if of the form p = 2k +1 (and it is believed that this is prime for
many k’s), since then the order of Z

∗
p is p − 1 = 2k, which is a power of 2 (which leads to

very efficient implementations). However, this efficiency also leads to a simple algorithm
(which one?) that can compute discrete log for such primes. So one has to be careful when
choosing p for which discrete log is hard.

Although computing x given y = gx mod p is believed to be hard, y reveals some partial
information about x. For example, from Lemma 5 we see that x is even iff y(p−1)/2 ≡
1 mod p. Since x is even iff LSB(x) = 0 (where LSB denotes least significant bit), we get

Lemma 6 Given y ∈ Z
∗
p (and p, g), there exists an efficient algorithm to compute LSB(logg(y)).

2Indeed, although algebraically Zp−1 and Z
∗
p appear distinct, they both identify with {1 . . . (p − 1)}.

3Moreover, it stays one-way even given the factorization of (p − 1).
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3 Facts in Zn(n = pq, p, q are prime)

First, we introduce an important theorem enabling us to reduce problems from Zn, where
n is composite, to Zp, where p is prime.

Theorem 13 (Chinese Remainder Theorem) Let m1,...,mk be pairwise relative prime.
Denote m = m1m2 · · ·mk, then ∀a1 ∈ Zm1

, ..., ∀ak ∈ Zmk
, there exists unique a ∈ Zm,

which can be computed in polynomial time, such that

a ≡ ai mod mi, ∀i = 1,...,k. (5)

Proof: Assume a = Σiaiui, where ui’s are left to decide. Take mod mk, we see that it is
sufficient

ui ≡ 1 mod mi

ui ≡ 0 mod mj , ∀j 6= i

Let us write ui = (Πj 6=imj)vi for unknown vi. Then vi ≡ (Πj 6=imj)
−1 mod mi, whose

existence is ensured by the pairwise relatively primality. It is easy to see that the ui’s above
satisfy the needed condition.

By the theorem, we have one-to-one correspondence Zm → Zm1
× ...×Zmk

, a 7→ (a1, ..., ak).
We will often use this corresponding without further explanation, i.e. saying (a1, . . . , an) ∈
Zm means the unique a ∈ Zm satisfying a mod mi ≡ ai. The more important thing is, the
addition and multiplication are preserved under this correspondence.

a + b = (a1 + b1, ..., ak + bk)

a · b = (a1 · b1, ..., ak · bk)

Example. Say m1 = 7, m2 = 11, m = 77, and a = 54. Then computing a1 and a2

is trivial: a1 = a mod 7 ≡ 5 and a2 = a mod 11 = 10. The interesting direction is the
converse. Gievn (5, 10), how do we derive 54 back? First, using extended Euclid we get
1 = 2 · 11− 3 · 7 = 22− 21. Thus, 22 = (1, 0) and −21 = 77− 21 = 56 = (0, 1). Hence,

(5, 10) ≡ 5 · (1, 0) + 10 · (0, 1) ≡ 5 · 22 + 10 · (−21) ≡ 110− 210 ≡ −100 mod 77 = 54

If we let Z
∗
m = {a ∈ Zm | gcd(a, m) = 1}, we get that Z

∗
m = Z

∗
m1
× ...× Z

∗
mk

under this
correspondence as well. Indeed, the number is relatively prime to m ⇐⇒ its residues mod-
ulo all the mi’s are relatively prime to the corresponding mi’s. Notice, Z

∗
m is a multiplicative

subgroup of Zm, whose size was defined to be ϕ(m) earlier. From the correspondence above,
ϕ(m) = Πk

i=1ϕ(mi). In particular, since the order of every element in Zn divides the order
of the group ϕ(n), we get the following generalization of the Fermat’s little theorem.

Theorem 14 (Euler’s Theorem) For any a ∈ Z
∗
n, aϕ(n) mod n ≡ 1. In particular, for

n = pq, a(p−1)(q−1) mod n ≡ 1.
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Example. Say n = 35, so ϕ(n) = 24. Then 7250 mod 35 ≡ (72 mod 35)50 mod 24 ≡ 22 = 4.

From now on, we will always talk about Z
∗
m rather than Zm, since if we ever encounter

an element in Zm\Z
∗
m, we can factor m, which is believed to be hard. So, except for

mathematically, they will never come up in the cryptographic applications we consider.
Also notice that via the Chinese Remainder Theorem and the discussion in earlier sec-

tion, we know

Theorem 15 Addition, multiplication, exponentiation and taking inverses can be done in
polynomial time in Z

∗
m.

From now on, let us concentrate on numbers of the form n = pq, where p, q — k-
bit primes. Notice, ϕ(n) = |Z∗

n| = (p − 1)(q − 1) in this case. However, determining
ϕ(n) from n is easily seen to be equivalent to factoring n (simply solve a system pq = n,
(p− 1)(q− 1) = ϕ(n))! Thus, we see the first difference with the primes: the order of Z

∗
n is

provably hard to determine under the hardness of factoring assumption.
Let us now turn to solving various equations over Z

∗
n. Since QRs in Zp have two roots,

we know QRs in Zn have two times two = four roots. As in Zp, we introduce some symbol
to help us characterize characterize QR in Zn.

Definition 5 [Jacobi’s symbol] If n = pq, p, q are two primes, then we define the Jacobi’s

symbol of a = (a1, a2) ∈ Z
∗
n to be

(

a
n

)

=
(

a1

p

) (

a2

q

)

. The right hand items are Legendre

symbols. ♦

It turns out that there exists a polynomial time algorithm that can compute
(

a
n

)

even
without the factorization of n into p and q. We will not cover it though. How does it relate
to QR?

Proposition 7 If a is QR in Zn, then the Jacobi’s symbol of a is +1. However, the reverse
does not necessarily hold.

Proof: a is QR in Zn, then so is true for a1 ∈ Zp, a2 ∈ Zq, and thus
(

a1

p

)

=
(

a2

q

)

= +1,

proving the first part. For the second part, notice that the number of QR’s is a quarter of
Z
∗
n, while the number of elements with Jacobi symbol +1 is a half of Z

∗
n. Indeed, (a1, a2)

with
(

a1

p

)

=
(

a2

q

)

= −1 yield a = (a1, a2) with
(

a
n

)

= (−1)(−1) = +1, even though this a

is not a quadratic residue.

Now, given a ∈ Z
∗
n with Jacobi symbol +1, can we actually determine if a is a QR over

Z
∗
n? (if

(

a
n

)

= −1, we know the answer is “no”.) The answer is not only believed to be
negative, but

Assumption 16 (QR assumption) For a randomly chosen n = pq, a randomly chosen
a ∈ Jn = {b:

(

b
n

)

= +1}, and for arbitrary PPT algorithm A,

Pr[α = QR(a) | n = pq, a← Jn, A(a, n)→ α ∈ {±1}] ≤
1

2
+ negl(k)
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Thus, we can not do anything better than tossing a coin! As immediate corollary, we can
expect that it is computationally hard in Z

∗
n to solve equations x2 ≡ a mod n without the

factorization of n.4

Hence we obtain a candidate for OWF, namely, SQ:

Definition 6 SQ is the function defined in Zn as: x 7→ x2 mod n. ♦

As an evidence that our assumption is reasonable, we cite a result due to Rabin:

Theorem 17 SQ is OWF ⇐⇒ FACTORING is hard.

Proof: Assume SQ is easy to reverse with non-negligible probability ε, we construct an
efficient algorithm to factorize n with non-negligible probability ε/2.

• Pick up a random a ∈ Zn.

• Compute b as SQ(a2 mod n). If this fails, exit.

• IF (a ≡ ±b mod n) THEN fail and exit;

• ELSE output (gcd(a + b, n), n
gcd(a+b,n)) as the needed factorization.

Notice, if ε is the probability SQ algorithm works, we claim we have probability a
1/2 of factoring n conditioned on SQ succeeding, i.e. ε/2 probability of sucess overall
(contradicting that factoring is hard). For the latter claim, it is easy to see that if a =
(a1, a2) (for unknown a1 ∈ Z

∗
p and a2 ∈ Z

∗
q), the 4 square roots of a2 are a = (a1, a2),

−a = (−a1,−a2), but also some c = (−a1, a2) and −c = (a1,−a2). With probability 1/2
the successful SQ inverter will return c or −c (rather than a or −a). In the first case,
gcd(a + c, n) = p, and in the second gcd(a− c, n) = q. In both cases, we factor n.

We also mention that Rabin’s function is 4-to-1, since every square has four square roots.
It turns out, we can get a candidate one-way permutation for a special p and q. Namely,
assume p ≡ 3 mod 4 and p ≡ 3 mod 4 (such n = pq is called a Blum’s integer), and let Qn

denote the subgroup of quadratic residues modulo n = pq. In this case, it turns out (we
omit the proof) that out of 4 square roots of any a ∈ Qn precisely one also belongs to Qn.
Put differently, the squaring function SQ is a permutation over Qn. Thus,

Lemma 8 If factoring Blum’s integers is hard, then SQ is a OWP over quadratic residues
modulo n.

Finally, let us briefly talk about the RSA function xe mod n, where e ∈ Z
∗
ϕ(n). This

function is clearly easy to invert if factoring is easy. Simply solve xe = y in Z
∗
p and Z

∗
q (as

explained in the previous section) and use the Chinese Remainder theorem. Alternatively,
compute d = e−1 mod ϕ(n) (which is easy with factorization, since ϕ(n) = (p− 1)(q − 1)),
and notice that

yd mod n ≡ xed mod n ≡ xed mod ϕ(n) mod n ≡ x1 mod n = x

4Of course, given the factorization of n = pq, solving x2 ≡ a mod n is easy. Using CRT, write a = (a1, a2),
then find solutions ±b to x2 ≡ a1 mod p, ±c to x2 mod a2 mod q, and then use CRT backward to get the
four solutions (b, c), (−b, c), (b,−c), (−b,−c) to x2 ≡ a mod n.
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Example. Say n = 5 · 11 = 55, and e = 7 (which is relatively prime to ϕ(55) = 40).
Turns out, d = 7−1 mod 40 = 23 (as 7 · 23 = 161 ≡ 1 mod 40). Now, 27 mod 55 =
128 mod 55 = 18, and one can check that 1823 mod 55 = 2. The way to do it is to compute
1823 mod 5 = 33 mod 5 = 2, 1823 mod 11 = 73 mod 11 = 343 mod 11 = 2, and then use
CRT to derive (2, 2) = 2 indeed.

The famous RSA assumption states that

Conjecture 18 (RSA Assumption) For randomly generated n = pq and e ∈ Z
∗
ϕ(n),

RSAn,e is a TDP family.

How does RSA assumption compare to the factoring assumption? We just pointed out
that is factoring is easy, then so is RSA. The converse is not known to be true. Namely, for
all we know RSA might be slightly easier than factoring. However, one can show that the
specific way to break RSA by computing d from e and n is equivalent to the hardness of
factoring. However, maybe there are some other, perhaps less “natural” but more effective,
ways to break RSA. Also notice that the reason one cannot compute d is partially because
one cannot compute ϕ(n) = (p− 1)(q− 1) from n. This is in contrast to the case of primes,
where ϕ(p) = p− 1.

The remaining training on number theory will be given as we move along.
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This lecture will study the notion of hardcore bit for a given OWF f . Intuitively, such
a hardcore bit h(x) is easy to compute from x, but almost impossible to even guess well
from f(x). We will see specific examples of hardcore bits for modular exponentiation, RSA
and Rabin’s squaring function. Next we will show a groundbreaking result of Goldreich-
Levin, that (more or less) shows a general hardcore bit for any OWF. We will then consider
two natural applications of hardcore bits to the problem of encryption. Firstly, we will
show an inuitively good public-key encryption for one bit, and then a “plausible” secret-key
encryption which encrypts k+1 bits with k-bit key (thus beating the Shannon information-
theoretic bound). We will then try to extend the hardcore bit construction to extracting
many “pseudorandom bits”, by analogy to the S/Key system. We will notice that our many-
bit construction seems to satisfy a very special notion of security, which we call “next-bit
unpredictability”. We then will make a formal definition of a pseudorandom generator,
which seems to be a more relevant primitive for our encryption applications. We stop by
asking the question of whether our “next-bit secure” construction is indeed a pseudorandom
generator.

1 Hardcore Bits

Last lecture we addressed some of the criticism over straightforward usages of OWF’s, OWP’s
and TDP’s. Specifically, our main criticism was the fact that a OWF f(x) could reveal a
lot of partial information about x (remember generic example f(x1, x2) = (f ′(x1), x2) that
reveals half of its input bits, or more realistic one of exponentiation f(x) = gx mod p that
reveals the LSB(x) = y(p−1)/2).

The obvious solution seemed to try to completely hide all information about x, given
f(x). However, this leads to a vicious circle, since it is really equivalent to the problem of
secure encryotion that we started from. Instead, we explore the idea of completely hiding
not all, but only a specific and carefully chosen partial information about x, when given
f(x). The first preliminary step towards this goal is to determine how to completely hide
exactly just one bit of information about the plaintext x. This leads us to the following
definition:

Definition 1 [Hardcore bit] A function h : {0, 1}∗ → {0, 1} is called a hardcore bit for a
function f if

• h(x) is polynomial time computable (from x):

(∃ poly-time H)(∀x)[H(x) = h(x)]
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• No PPT algorithm that can predict h(x) given f(x) better than flipping a coin:

(∀ PPT A) Pr[A(f(x)) = h(x) | x←r {0, 1}k] ≤
1

2
+ negl(k)

♦

Remark 1 Notice, we compare the success of A to a 1
2 + negl(k) rather than negl(k), as

we did for OWF’s. The reason is that the output of h is now only one bit, so A can always
guess if with probability 1

2 by flipping a coin. Of course, we could have said that h is difficult
to compute by saying that A succeeds with probability at most 1−ε, where ε is non-negigible.
However, we really want to say much more (and that is why we started with h(x) being just
1 bit for now): not only is h hard to compute, it is even hard to predict.

Remark 2 We can also naturally define hardcore bits for collection of OWFs, where h can
depend on the public key PK of f .

Thus, a hardcore bit h(x) pinpoints an aspect of x that is truly hidden given f(x).
Namely, the knowledge of f(x) does not allow us to predict h(x) any better than without it
(i.e., by flipping a coin), so h(x) looks random given f(x). It is to be noted that we need
not require that h(x) be a bit that is selected from the string x itself, but, in general, may
depend on x in more complex (but efficiently computable) ways. This is not inconsistent
with the idea that h(x) is supposed to represent some general information about x. We
might want to attempt the construction in two ways:

1. Taking as hypothesis that a concrete function is OWF, exhibit a hardcore bit for that
function. (This is a useful, but not very general construction.)

2. Taking as hypothesis that an arbitrary function is OWF, exhibit a hardcore bit for
that function. (This is the strongest construction we can hope for.)

2 Hardcore Bits for Concrete OWF’s

The concrete function that we consider is the exponentiation function mod p, f(x) = y =
gx mod p, where g is the generator of Z

∗
p. Recall, the least significant bit LSB(x) was not

hardcore for f , since it could be computed from y in polynomial time. Instead, we define
the most significant bit of x, MSB, as follows:

MSB(x) =

{

0, if x < p−1
2

1, if x ≥ p−1
2

Remark 3 MSB(x) not defined to be simply x1 in order to make it unbiased, since the
prime p is not a perfect power of 2.

Theorem 1 If f(x) = (gx mod p) is a OWP, then MSB(x) is a hardcore bit for f .
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Proof Sketch: A rigorous proof for the above theorem exists. It is our usual proof by
contradiction, which takes as hypothesis that MSB is not an hardcore bit for f , and proves
that f is not OWF. The proof is constructive, and explicitly transforms any PPT that can
compute MSB(x) from f(x) with non-negligible advantage, into a PPT that can compute
the Discrete Log with non-negligible probability. This proof is, however, somewhat techni-
cal, so we settled for a simpler, but quite representative result stated below.

Lemma 1 If there exists a PPT that can always compute MSB(x) from f(x), then there
is a PPT that can always invert f(x) (i.e., compute the discrete log of y = f(x)).

Proof: The idea of the algorithm is very simple. We know that LSB(x) = xk is easy to
compute given y = gx mod p. This way we determine xk. Now we can transform y into
g[x1...xk−10] = (g[x1...xk−1])2 mod p (by dividing y by g if xk = 1). We also know how to
extract square roots modulo p. So it seems like we can compute g[x1...xk−1], and keep going
the same way (take LSB, extract square root, etc.) until we get all the bits of x. However,
there is a problem. The problem is that g[x1...xk−10] has two square roots: y0 = g[x1...xk−1]

(the one we want) and y1 = (−g[x1...xk−1]) = g
p−1
2

+[x1...xk−1] (here we used the fact that
−1 = g(p−1)/2). So after we compute the square roots y0 and y1, how do we know which
root is really y0 = g[x1...xk−1]? Well, this is exactly what the hardcore bit MSB tells us!
Namely, MSB(Dlog(y0)) = 0 and MSB(Dlog(y1)) = 1. The complete algorithm follows.

i = k;
while (y ≥ 1) do /* y = f(x) */
begin

output ( xi = LSB(Dlog(y)) );
/* Assertion: x = [x1x2 . . . xi] */
if ( xi == 1 ) then y := y/g;
/* Assertion: y = g[x1x2...xi−10] = (g[x1x2...xi−1])2 */
Let y0 and y1 be square roots of y;
If ( MSB((Dlog(y1)) == 0 ) /* Using hypothetical algortihm */
then y := y1

else y := y2

i := i− 1;
end

To summarize, the value of MSB plays a critical role in distinguishing which square root
of y corresponds to x/2. This enables us to use the LSB iteratively, so that the process is
continued to extract all the bits of x.

It turns out that the other OWF’s we study have natural hardcore bits as well:

1. LSB and MSB are hardcore bits for Rabin’s Squaring Function.

2. All the bits of x are hardcore bits for RSA.
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3 Construction of a hardcore bit for arbitrary OWF

Looking at the previous examples, we would now like to see if any OWF f has some easy
and natural hardcore bits. Specifically, it would be great if at least one the following two
statements was true:

1. Any OWF has some particular bit xi in x (i depends on f) which is hardcore for f .

2. A concrete boolean function h (which is not necessarily an input bit) is a hardcore
bit for all OWF’s f .

Unfortunately, both of these hopes are false in general.

1. From arbitrary OWF f , it is possible to construct another OWF g, such that none of
the bits of x are hardcore for g. (cf. Handout).

2. For any boolean function h and OWF f , if we let g(x) = f(x) ◦ h(x), then: (1) g is
also a OWF; (2) h is not hardcore for g. Part (1) follows from the fact that an inverter
A for g would imply the one for f . Indeed, given y = f(x), we can ask the inverter
A for g to invert both f(x) ◦ 0 and f(x) ◦ 1, and see if at least one of them succeeds.
Part (2) is obvious. Thus, no “universal” h exists.

Despite these negative news, it turns out that we nevertheless have a very simple hard-
core bit for an arbitrary OWF. This is the celebrated Goldreich Levin construction.

4 Goldreich Levin Construction

We will begin with a definition that generalizes the concept of selecting a specific bit from
a binary string.

Definition 2 [Parity] If x = x1x2 . . . xk ∈ {0, 1}k, and r = r1r2 . . . rk ∈ {0, 1}k, then
h(x, r) = r1x1 ⊕ r2x2 . . .⊕ rkxk = (r1x1 + r2x2 + . . . + rkxk mod 2) is called the parity of x
with respect to r. ♦

Notice, r can be viewed as a selector for the bits of x to be included in the computation
of parity. Further, the expression for the notation for the inner product, ·, can be used
profitably, i.e., h(x, r) = (r · x) can be viewed as the inner product of binary vectors x and
r modulo 2. The ”basis strings” ei with exactly one bit ri = 1, give the usual specific bit
selection xi.

The Goldrecih-Levin theorem essentially says that “if f is a OWF, then most parity
functions h(x, r) are hardcore bits for f .” To make the above statement more precise, it is
convenient to introduce an auxiliary function gf (x, r) = f(x) ◦ r (the concatenation of f(x)
and r), where |x| = |r|. Notice, a random input for gf samples both r and x at random from
{0, 1}k, so h(x, r) = x · r indeed computes a “random parity for (randomly selected) x”.
Notice also, that if f is a OWF/OWP/TDP, then so is gf (in particular, gf is a permutation
if f is). Now, the Goldrecih-Levin theorem states that
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Theorem 2 (Goldreich-Levin Bit) f is a OWF, then h(x, r) is a hardcore bit for gf .
More formally:

(∀ PPT A) Pr[A(f(x), r) = (x · r) | x, r ←r {0, 1}k] <
1

2
+ negl(k)

Remark 4 A hardcore bit for gf is as useful as the one for f , since f is really compu-
tationally equivalent to gf (since r is part of the output, inverting gf exactly reduces to
inverting f). Thus, we will often abuse the terminology and say “since f is a OWF, let us
take its hardcore bit h(x)”. But that we really mean that in case we are not aware of some
simple hardcore bit for a specific f , we can always take the Goldreich-Levin bit for gf and
use it instead. Similar parsing should be given to statement of the form “every OWF has a
hardcore bit”. Again, in the worst case always use the Goldrecih-Levin bit for gf . Finally,
another popular interpretation of this result is that “most parities of f are hardcore”.

A rigorous proof of the Goldreich-Levin theorem exists. For simplicity, we will assume
that f (and thus gf ) are permutations, so that (x · r) is uniquely defined given f(x) ◦ r.

The proof proceeds proof by contradiction, by taking as hypothesis that h(x, r) is not
a hardcore bit for gf , and proves that f is not a OWF. The proof is constructive, and
explicitly transforms any PPT A that can compute h(x, r) with non negligible probability
for most values of r, given f(x) and r, into a PPT B that can compute x with non negligible
probability, given f(x). However and despite the simplicity of theorem statement, the full
proof is extremely technical. Therefore, we will again only give a good intuition of why it
works.

Before going to the general proof, in the next subsection we give two simple cases
which make the proof considerably simpler. A reader not interesting in the technical proof
is adviced to read only these two cases, and skip the following subsection describing the
general case.

4.1 Simple Cases

First, assume that we are given a PPT A that always computes (x · r) given f(r) ◦ r. Well,
then everything is extremely simple. Given y = f(x) that we need to invert, we already
observed that x · ei = xi is the i-th bit of x, where ei is a vector with 1 only at poistion i.
Thus, asking A(y, ei) will give us xi, so we can perfectly learn x bit by bit.

Unfortunately, our assumption on A is too strong. In reality we only know that it
succeeds on a slight majority of r’s. In particular, maybe it always refuses to work for
“basis” r = ei. So let us be more reasonable and assume that

Pr[A(f(x), r) = (x · r) | x, r ← {0, 1}k] >
3

4
+ ε (1)

where ε is non-negligible. Here we use 3/4 instead of 1/2 for the reason to be clear in a
second. But first we need a definition. Given a particular value x, we let

Succ(x)
def
= Pr[A(f(x), r) = (x · r) | r ← {0, 1}k] (2)
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Namely, Succ(x) is “how well” A predicts x · r for a particular x (averaged over r). Then,
Equation (1) is equivalent to saying that the expected value of Succ(x) is non-trivially greater
than 3/4:

E[Succ(x)] >
3

4
+ ε (3)

Let us call x “good” if Succ(x) > 3
4 + ε

2 . Then a simple averaging argument show that

Pr[x is good | r ← {0, 1}k] >
ε

2
(4)

Indeed, if Equation (4) is false, then conditioning on whether or not x is good, the
largest that E[Succ(x)] can be is

E[Succ(x)] ≤
ε

2
· 1 +

(

1−
ε

2

)

·

(

3

4
+

ε

2

)

<
3

4
+ ε

which is contradicting Equation (3).
We now will construct an inverter B for f which will only work well for good x. But

since the fraction of good x is non-negligible (at least ε/2 by Equation (4)), the existence
of B will contradict the fact that f is a OWF. Thus, in the following we will assume that x
is good when analyzing the success of B.

The idea is to notice that for any r ∈ {0, 1}k

(x · r)⊕ (x · (r ⊕ ei)) =





∑

j 6=i

rjxj + rixi mod 2



⊕





∑

j 6=i

rjxj + (1− ri)xi mod 2



 = xi

Moreover both r and (r ⊕ ei) are individually random when r is chosen at random. Hence,
for any fixed index i and any good x,

Pr[A(y, r) 6= (x · r) | y = f(x), r ← {0, 1}k] <
1

4
−

ε

2

Pr[A(y, r ⊕ ei) 6= (x · (r ⊕ ei)) | y = f(x), r ← {0, 1}k] <
1

4
−

ε

2

Thus, with probability at least 1 − 2(1
4 −

ε
2) = 1

2 + ε, A will be correct in both cases, and
hence we correctly recover xi with probability 1

2 + 2ε. Thus, using A we can have a PPT

procedure B′(y, i) (which is part of “full” B below) which will sample a random r and
return A(y, r)⊕A(y ⊕ ei), such that for any good x and any i,

Pr[B′(y, i) = xi | y = f(x)] ≥
1

2
+ ε (5)

Namely, we can predict any particular bit xi with probability greater than 1/2. Thus,
repeating B′(y, i) roughly t = O(log k/ε2) times (each time picking a brand new r; notice
also that t is polynomial in k by assumption on ε) and taking the majority of the answers,
we determine each xi correctly with probability 1− 1/k2.1 Namely, by taking the majority

1This follows from the Chernoff’s bound, stating that the probability the an average of t independent

experiments is “ε-far” from its expectation is of the order e−Ω(tε2). More formally, let Zj be the indicator
variable which is 1 if the j-test was correct, where j = 1 . . . t. Then all Zj are independent and E[Zj ] ≥

1
2
+ε.

Then, if Z =
P

j
Zj , we have E[Z] ≥ t( 1

2
+ ε), and Pr[Z < t/2] ≤ eΩ(tε2) by the Chernoff’s bound.
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vote we essentially “amplified” the success of B′ and obtained an algortihm B′′(y, i) such
that for any good x and any i,

Pr[B′′(y, i) = xi | y = f(x)] ≥ 1−
1

k2
(6)

We now repeat B′′ for all indices i, therefore defining B(y) as running B′′(y, 1) . . . B′′(y, k).
We get that the probability that at least one xi is wrong is at most k/k2 = 1/k, so B recov-
ers the entire (good) x correctly with probability 1− 1/k, which is certainly non-negligible,
contradicting the one-wayness of f .

4.2 General Case∗ (Technical, can be skipped)

Still, our assumption about the success of A with probability 3
4 + ε is too much. We can

only assume 1
2 + ε. It turns out the proof follows the same structure as the simplistic proof

above, except the algorithm B′′ will be defined more carefully.
Specifically, recall our assumption now is that

Pr[A(f(x), r) = (x · r) | x, r ← {0, 1}k] >
1

2
+ ε (7)

where ε is non-negligible. As earlier, Equation (7) is equivalent to saying that the expected
value of Succ(x) (defined as in the previous section) is non-trivially greater than 1/2:

E[Succ(x)] >
1

2
+ ε (8)

Similarly to the previous section, we call x “good” if Succ(x) > 1
2 + ε

2 . Then the same
averaging argument as earlier implies that

Pr[x is good | r ← {0, 1}k] >
ε

2
(9)

Thus, as in the previous case, it suffices to show how to invert good x, except the
definition of “good” is considerably weaker than before: Succ(x) > 1

2 + ε
2 instead of a much

more generous Succ(x) > 3
4 + ε

2 .
As earlier, though, the way we construct our inverter B is by constructing a “bit pre-

dictor” B′′(y, i) which satisfies Equation (6), except “good” x is defined differently: for any
good x and any i,

Pr[B′′(y, i) = xi | y = f(x)] ≥ 1−
1

k2
(10)

Then B is defined as before to be B′′(y, 1) . . . B′′(y, k). Hence, we “only” need to define a
new, more sophisticated B′′ satisfying Equation (10).

The definition and the analysis of B′′ form the heart of the Goldreich-Levin proof. The
idea is the following. Recall, the algortihm B′′ from the previous section was defined as
follows: for some parameter t, B′′ chose t random values r1 . . . rt ∈ {0, 1}k, and then output
the majority of values of A(y, rj)⊕A(y, rj ⊕ ei), where j randges from 1 to t. The problem
is that we can no longer argue that Prr[A(y, r) ⊕ A(y, r ⊕ ei) = xi] ≥

1
2 + ε. A wrong

argument to get a weaker, but still sufficient bound would be to say each value is correct
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with probability at least 1
2 + ε

2 , so we succeed if either both are right or wrong, which
happens with probability at least

(

1

2
+

ε

2

)2

+

(

1

2
−

ε

2

)2

≥
1

2
+

ε2

2

The problem, of course, is that the success of A on correlated values r and r ⊕ ei is not
independent, and so we cannot just multiply these probabilities.

Instead, we have to built a more sophisticated predictor B′′. As before B′′ will choose
t random values r1, . . . , rt ∈ {0, 1}k (where we will determine t shortly). Now, however,
B′′ will also guess the correct value for (x · ri). Specifically, B′′ will choose t random bits
b1, . . . , bt ∈ {0, 1}, and will only work correctly, as explained below, if x · rj = bj for all
j = 1 . . . t. This immediately loses a factor 2−t in the success probability of B′′, so we
cannot make t too large. Technically, this also means that we will satisfy Equation (5) only
conditioned on the event E stating that all the t guesses of B′′ are correct: for any good x
and any i,

Pr[B′′(y, i) = xi | y = f(x), E is true] ≥ 1−
1

k2
(11)

Luckily, this still suffices to prove our result if 2−t is non-negligible (which it will be), since
then

Pr[B(y) = x | y = f(x)] ≥ Pr(E) · Pr[B(y) = x | y = f(x), E is true] ≥ 2−t ·

(

1−
1

k

)

The point, however, is that if B′′ correctly guessed all the t paritites x · rj (which we
assume for now), then B′′ also correctly knows 2t parities of all the linear combinations
of the rj ’s. Concretely, for any non-empty subset J ⊆ {1 . . . t}, we let rJ = ⊕j∈J rj and
bJ = ⊕j∈J bj . Then

x · rJ = x · (⊕j∈J rj) = ⊕j∈J (x · rj) = ⊕j∈J bj = bJ

Now we will let B′′ call A on 2t values A(y, rJ ⊕ ei), for all non-empty subsets J ⊆ {1 . . . t},
and output the majority of bJ ⊕ A(y, rJ ⊕ ei). The rational is that whenever A is correct
on rJ ⊕ ei, the value

bJ ⊕A(y, rJ ⊕ ei) = x · rJ ⊕ x · (rJ ⊕ ei) = x · ei = xi,

as needed. The tricky part is to argue that for “small enough” t, B′′ is correct with
probability 1− 1/k2 (once again, conditioned on E being true).

We do this as follows. Define an indicator random variable ZJ to be 1 if and only if
A(y, rJ ⊕ ei) = x · (rJ ⊕ ei); i.e., if A is correct on rJ ⊕ ei. Then, B′′ is incorrect if and

only if a majority of ZJ are incorrect, i.e. Z
def
=

∑

J 6=∅ ZJ < 2t−1. But let us compute the

expected value of Z. First, for any non-empty J , rJ is random in {0, 1}k, and thus, rJ ⊕ ei

is also random. Since x is good, this means E[ZJ ] ≥ 1
2 + ε

2 , so E[Z] ≥ 2t−1(1 + ε). On the
other hand, the probability that B′′ failed is Pr[Z < 2t−1].

Ideally, we would like to use the Chernoff’s bound, like we did before, but we cannot
do it, since the values ZJ are not independent. Luckily, there are pairwise independent.
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This means than for any non-empty and distinct subsets I and J , the values rI and rJ are
independent, which means that rI ⊕ ei and rJ ⊕ ei are independent, which in turn means
that ZI and Zj are independent. For such pairwise independent random variables, it turns
out we can apply the so called Chebyschev’s inequality which states that

Lemma 2 (Chebyschev’s inequality) If W =
∑T

j=1 Wj, where Wj are pairwise inde-
pendent indicator variables with mean at least p, then for any δ > 0,

Pr[Z < T (p− δ)] ≤
1

δ2T

We now apply this lemma to our T = 2t − 1 variables ZJ by writing

Pr[Z < 2t−1] ≤ Pr

[

Z ≤ (2t − 1)

((

1

2
+

ε

2

)

−
ε

2

)]

≤
4

(2t − 1)ε2

By setting t = log(1+4k2/ε2) = O(log(k/ε)), we get Pr[B′′(y, i) 6= xi | E is true] ≤ 1/k2,
as needed. The only thing to observe is that 2−t = O(ε2/k2) is indeed non-negligible, since
ε is non-negligible.

This concludes the proof of the Goldreich-Levin’s Theorem.

5 Public Key Cryptosystem for One Bit

We will now look at how to make use of what we have at hand. We will not be terri-
bly rigorous for the time being, and will proceed with the understanding that speculative
adventures are acceptable. This time we will hand-wave a little, but will return to the
problematic sections in the next lecture.

It seems intuitive that, if we have a hardcore bit, we should be able to send one bit of
information with complete security in the Public Key setting. And we show exactly that.

• Scenario

Bob(B) wants to send a bit b to Alice(A). Eve(E) tries to get b. Alice has a public
key PK and a secret key SK hidden from everybody.

• Required Primitives

1. TDP f will be the public key PK and its trapdoor information t will be Alice’s
secret key SK.

2. Hardcore bit h for f . If needed, can apply Goldrecih-Levin to get it.

• Protocol

B selects a random x ∈ {0, 1}k and sends A the ciphertext c = 〈f(x), h(x)⊕ b〉.

• Knowledge of the Concerned Parties before Decryption

B: b, x, c, f, h.

E: c, f, h.

A: c, t, f, h.
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• Decryption by A

x is obtained from f(x) using the trapdoor t;

h(x) is computed from x;

b is obtained from (h(x)⊕ b) using h(x).

• Security from E

Intuitively, to learn anything about b, E must learn something about h(x). But E
only knows f(x). Since h is hardcore, E cannot predict h(x) better than flipping a
coin, so b is completely hidden.

We note that this scheme is grossly inefficient. Even though it seems like we are using an
elephant to kill an ant, look what we accoplished: we constructed the first secure public-key
cryptosystem!

Having said this, we would still like to improve the efficiency of this scheme. Can we
send arbitrary number of bit by using a single x above? More generally, can we extract a
lot of random looking bits from a single x?

6 Public Key Cryptosystem for Arbitrary Number of Bits

We will try to generalize the system in a manner analogous to what we did with the S/Key
system. Remember, there we published the value y0 = fT (x), and kept giving the server
the successive preimages of y0. So maybe we can do the same thing here, except we will
use hardcore bits of successive preimages to make them into a good one-time pad! Notice
also that publishing f t(x) will still allow Alice to get back all the way to x since she has
the trapdoor.

• Scenario

Bob(B) wants to send a string m = m1 . . . mn to Alice(A). Eve(E) tries to get “some
information” about m. Alice has a public key PK and a secret key SK hidden from
everybody.

• Required Primitives

1. As before, TDP f will be the public key PK and its trapdoor information t will
be Alice’s secret key SK.

2. Hardcore bit h for f . If needed, can apply Goldrecih-Levin to get it.

• Protocol

B selects a random x ∈ {0, 1}k and sends A the ciphertext c = 〈fn(x), G′(x) ⊕m〉,
where

G′(x) = h(fn−1(x)) ◦ h(fn−2(x)) ◦ . . . ◦ h(x) (12)

Notice, G′(x) really serves as a “computational one-time pad”.
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• Knowledge of the Concerned Parties before Decryption

B: m, x, c, f, h.

E: c, f, h.

A: c, t, f, h.

• Decryption by A

x is obtained from fn(x) using the trapdoor t by going “backwards” n times;

G′(x) is computed from x by using h and f in the “forward” direction n times;

m is obtained from (G′(x)⊕m) using G′(x).

• Security from E

The intuition about the security is no longer that straightforward. Intuitively, if we
let p1 = h(fn−1(x)), . . . , pn = h(x) be the one-time pad bits, it seems like p1 looks
random given fn(x), so m1 is secure for now. On the other hand, p2 = h(fn−2(x))
looks secure even given fn(x) and p1 (since both can be computed from fn−1(x) and
p2 is secure even if fn−1(x) is completely known. And so on. So we get a very strange
kind of “security”. Even if the adversary knows fn(x) (which he does as it is part
of c), and even if he somehow learns m1, . . . , mi−1, which would give it p1, . . . , pi−1,
he still cannot predict pi, and therefore, mi is still secure. So we get this “next-bit
security”: given first (i − 1) bits, E cannot predict the i-th one. It is completely
unclear if

– “Next-bit security” is what we really want from a good encryption (we certainly
want as least this security, but does suffice?) For example, does our system
satisfy analogously defined “previous-bit security”?

– Our scheme satisfies some more “reasonable” notion of security.

The answers to these questions will come soon.

At this point, we turn our attention to Secret Key Cryptography based on symmetric keys.
We would like to contemplate whether we could transcend Shannon’s Theorem on key
lengths.

7 Secret Key Cryptosystems

Recall, our main question in secret key encryption was to break the Shannon bound.
Namely, we would like to encrypt a message of length n using a secret key of a much
smaller size k, i.e. k < n (and hopefully, k ≪ n). We right away propose a possible solution
by looking at the corresponding public-key example for encrypting many bits.

Recall, in the public key setting we used G′(x) (see Equation (12)) as a “computational
one-time pad” for m, where x was chosen at random by Bob. Well, now we can do the same
thing, but make x the shared secret! Notice also that now we no longer need the trapdoor,
so making f OWP suffices.
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• Scenario

Bob(B) wants to send a string m = m1 . . . mn to Alice(A). Eve(E) tries to get “some
information” about m. Alice and Bob share a random k-bit key x which is hidden
from Eve.

• Required Primitives

1. OWP f which is known to everyone.

2. Hardcore bit h for f . If needed, can apply Goldrecih-Levin to get it.

• Protocol

B sends A the ciphertext c = G′(x)⊕m, where G′(x) is same as in Equation (12).

G′(x) = h(fn−1(x)) ◦ h(fn−2(x)) ◦ . . . ◦ h(x) (13)

As before, G′(x) really serves as a “computational one-time pad”.

• Knowledge of the Concerned Parties before Decryption

B: m, x, c, f, h.

E: c, f, h.

A: c, x, f, h.

• Decryption by A

G′(x) is computed from secret key x by using h and f in the “forward” direction n
times;

m is obtained from (G′(x)⊕m) using G′(x).

• Security from E

Again, the intuition about the security is not straightforward. Similar to the public-
key example, it seems like we get what we called “next-bit security”: given first (i−1)
bits of m (or of G′(x)), E cannot predict the i-th bit of m (or G′(x)). It is completely
unclear if

– “Next-bit security” is what we really want from a good encryption (we certainly
want as least this security, but does suffice?) For example, does our system
satisfy analogously defined “previous-bit security”?

– Our scheme satisfies some more “reasonable” notion of security.

Again, the answers to these questions will come soon,

Before moving on, we also make several more observations. First, notice that we could
make n very large (in particular, much larger than k). Also, we can make the following
optimization. Recall that in the public key scenario we also send fn(x) to Alice so that she
can recover x. Now, it seems like there is no natural way to use it, so we really computed
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it almost for nothing... But wait, we could use fn(x) to make our one-time pad longer!
Namely, define

G(x) = fn(x) ◦G′(x) = fn(x) ◦ h(fn−1(x)) ◦ h(fn−2(x)) ◦ . . . ◦ h(x) (14)

Now we can use G(x) as the one-time pad for messages of length n + k, which is always
greater than our key size k, even if n = 1! Indeed, we claim that our intuitively defined
“next-bit security” holds for G(x) as well. Indeed, for i < k, fn(x) is completely random
(since x is random), so predicting the i-th bit based on the first (i − 1) bits is hopeless.
While for i > k our informal argument anyway assumed that Eve knows fn(x) (it was part
of the encryption). We will discuss later if it really pays off in the long run to use this
efficiency improvement (can you think of a reason why it might be good to keep the same
x for encrypting more than one message?)

However, using either G(x) or G′(x) as our one-time pads still has its problems that we
mentioned above. Intuitively, what we really want from a “computational one-time pad” is
that it really looks completely random to Eve. We now formalize what it means, by defining
an extremely important concept of a pseudorandom number generator.

8 Pseudo Random Generators

Intuitively, a pseudorandom number generator (PRG) stretches a short random seed x ∈
{0, 1}k into a longer output G(x) of length p(k) > k which nevertheless “looks” like a
random p(k)-bit strings to any computationally bounded adversary. For clear reasons, the
adversary here is called a distinguisher.

Definition 3 [Pseudo Random Generator] A deterministic polynomial-time computable
function G : {0, 1}k → {0, 1}p(k) (defined for all k > 0) is called a pseudorandom number
generator (PRG) if

1. p(k) > k (it should be stretching).

2. There exists no PPT distinguishing algorithm D which can tell G(x) apart from a truly
random string R ∈ {0, 1}p(k). To define this formally, let 1 encode “pseudorandom”
and 0 encode “random”. Now we say that for any PPT D

|Pr( D(G(x)) = 1 | x←r {0, 1}k )− Pr( D(R) = 1 | R←r {0, 1}p(k) )| < negl(k)

♦

We observe that we require the length of x be less than the output length of G(x). This
is done since otherwise an identity function will be a trivial (and useless) PRG. It should
not be that easy! On the other hand, requiring p(k) > k makes this cryptographic primitive
quite non-primitive to construct (no pun intended).

Secondly, we are not creating pseudorandomness from the thin air. We are taking a truly
random seed x, and stretch it to “computationally random” output G(x). In other words,
G(x) is computationally indistinguishable from a random sequence (i.e., looks random),
only provided that (much shorter seed) x is random.
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9 Points to Ponder

We would like to conclude with some questions which are food for thought.

1. Is our public-key encryption really good?

2. What about the secret-key encryption?

3. Are G′(x) and G(x) (see Equations (13) and (14)) pseudorandom generators?

4. Can we output the bits of G′(x) in “forward” order?

5. Is “next-bit security” enough to imply a true PRG?
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In this lecture we formalize our understanding of next-bit security and its relationship to
pseudorandomness. Namely, we prove that next-bit security implies a PRG. On our way to
this proof we introduce the important cryptographic idea of computational indistinguisha-
bility and the related technique of the hybrid argument. Having proved that functions G(x)
and G′(x) (which we introduced in the last lecture and which are defined here in Equa-
tions (1) and (2)) are next-bit secure and therefor PRG’s, we show that Equation (1) can
be used to construct a PRG without our having to decide a length in advance. We look at
two specific examples of such PRG’s: the Blum-Micali generator and the Blum-Blum-Shub
generator. Next we examine the relationship between PRG’s and OWF’s and come to the
startling conclusion that asserting the existence of one of these primitives is equivalent to
asserting the existence of the other. Finally we introduce the important idea of forward
security for a PRG and discuss the role of PRG’s in real life.

1 Next-Bit Unpredictability and PRG’s

Last lecture we used the concept of hardcore bits to construct public- and secret-key cryp-
tosystems whose security was plausible but unclear. Both of our constructions used a OWP

(possibly trapdoor) f and its hardcore bit h and considered iterating f(x) (for a random
x ∈ {0, 1}k) n times, and output the hardcore bits of f i(x) in reverse order. It particular,
we considered two functions G′ : {0, 1}k → {0, 1}n and G : {0, 1}k → {0, 1}k+n defined as

G′(x) = h(fn−1(x)) ◦ h(fn−2(x)) ◦ . . . ◦ h(x) (1)

G(x) = fn(x) ◦G′(x) = fn(x) ◦ h(fn−1(x)) ◦ h(fn−2(x)) ◦ . . . ◦ h(x) (2)

Intuitively and by the analogy with the S/Key system, these functions seem to satisfy the
following notion of security which we now define formally.

Definition 1 [Next-bit Unpredictability] A deterministic polynomial-time computable func-
tion G : {0, 1}k → {0, 1}p(k) (defined for all k > 0) satisfies the next-bit unpredictability
property if for every index 0 ≤ i ≤ p(k) and every PPT next-bit predictor P

Pr
(

b = gi

∣

∣

∣
x←r {0, 1}k, g = g1 . . . gp(k) = G(x), b← P (g1 . . . gi−1)

)

<
1

2
+ negl(k)

Namely, no predictor P can succeed in guessing gi from Gi−1 = g1 . . . gi−1 significantly
better than by flipping a coin. ♦

We now formally show that G(x) (and hence G′(x) as well) satisfies this property.

Lemma 1 If f is a OWP, h is a hardcore bit of f and G is defined by Equation (2), then
G is next-bit unpredictable.
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Proof: The proof is almost identical to the one we used for the S/Key system. So assume
for some i and some PPT P our function G is not next-bit unpredictable. We notice that
we must have i > k, since otherwise gi is part of a truly random fn(x) (remember, x is
random), and is independent of Gi = g1 . . . gi−1. Thus, assume i = k+j where j > 0. Thus,

Pr
(

P (fn(x), h(fn−1(x)), . . . , h(fn−j+1(x))) = h(fn−j(x)
)

>
1

2
+ ǫ

We now construct a predictor A which will compute the hardcore bit h(x̃) from ỹ = f(x̃).
As with S/key, A simply outputs

P (f j−1(ỹ), h(f j−2(ỹ)), . . . , h(ỹ))

with the hope that P computes h(f−1(ỹ)) = h(x̃). The analysis that the advantage of A is
ǫ is the same as with the S/key example, and uses the fact that f is a permutation.

Having formally verified this, we ask the same question as before. Do G(x) and G′(x)
in Equation (1) and Equation (2) really satisfy their purpose of being “computational one-
time pads”? Last lecture we also intuitively argued that this means that G(x) (resp. G′(x))
should really look indistingushable from a truly random string of length n + k (resp. n).
We then formalized this property by defining the notion of a pseudo-random generator.

Definition 2 [Pseudorandom Generator] A deterministic polynomial-time computable func-
tion G : {0, 1}k → {0, 1}p(k) (defined for all k > 0) is called a pseudorandom number
generator (PRG) if

1. p(k) > k (it should be stretching).

2. There exists no PPT distinguishing algorithm D which can tell G(x) apart from a truly
random string R ∈ {0, 1}p(k). To define this formally, let 1 encode “pseudorandom”
and 0 encode “random”. Now we say that for any PPT D

|Pr( D(G(x)) = 1 | x←r {0, 1}k )− Pr( D(R) = 1 | R←r {0, 1}p(k) )| < negl(k)

♦

Thus, a pseudorandom number generator (PRG) stretches a short random seed x ∈
{0, 1}k into a longer output G(x) of length p(k) > k which nevertheless “looks” like a
random p(k)-bit strings to any computationally bounded adversary. For clear reasons, we
call the adversary D a distinguisher.

Now, rather than verifying directly if our G and G′ are PRG’s, we will prove a much
more suprising result. Namely, we show that any G which satisfies next-bit unpredictability
is a PRG.

Theorem 1 If an arbitrary G : {0, 1}k → {0, 1}p(k) is next-bit unpredictable, then G is a
PRG. More quantitively, if some PPT distinguisher for G has advantage ǫ is telling G(x)
apart from a random R, then for some index 1 ≤ i ≤ p(k) there is a PPT predictor for G
which has advantage at least ǫ/p(k).

Lecture 5, page-2



We notice that the converse (PRG implies next-bit unpredictability) is obvious. Indeed,
if some P breaks next-bit unpredcitability of some G at some index i, here is a distinguisher
D(y1 . . . yp(k)):

Let g = P (y1 . . . yi−1).
If g = yi output 1 (“pseudorandom”), esle output 0 (“random”)

Indeed, by assumption, if y = G(x), then Pr(D(y) = 1) ≥ 1
2 +ǫ. On a random string y = R,

clearly Pr(D(y) = 1) = 1
2 , since there is no way P (R1 . . . Ri−1) can predict a totally fresh

and independent Ri.

We give the proof of Theorem 1 in Section 3. The proof uses an extremely important
technique called a hybrid argument. However, it is a somewhat technical to understand
right away. Therefore, we step aside and introduce several very important concepts that
will (1) make the proof of Theorem 1 less mysterious; (2) explain better the definition of a
PRG by introducing the general paradigm of computational indistiguishability; (3) make new
definitions similar to that of a PRG very easy to express and unserstand; and (4) introduce
the hybrid argument in its generality. We will return to our mainstream very shortly.

2 Computational Indistinguishability + Hybrid Argument

The definition of OWF’s/OWP’s/TDP’s had the flavor that

“something is hard to compute precisely”

We saw that this alone is not sufficient for cryptographic applications. The definition of a
hardcore bit and subsequently of the next-bit unpredictability were the first ones that said
that

“something is hard to predict better than guessing”

Finally, the definition of a PRG took a next crycial step by saying that

“something is computationally indistinguishable from being random”

Not surprisingly, we will see many more cryptographic concepts of a similar flavor where
more generally

“something is computationally indistinguishable from something else”

Intuitively, “something” will often be the cryptographic primitive we are considering, while
“something else” is the ideal (and impossible to achieve/very expensive to compute) ob-
ject we are trying to efficiently approximate. In order to save time in the future and to
understand this concept better, we treat this paradigm in more detail.

Definition 3 Let k be the security parameter and X = {Xk}, Y = {Y k} be two ensembles
of probability distributions where the descrytpion of Xk and Y k are of polynomial length
in k. We say that X and Y are computationally indistinguishable, denoted X ≈ Y , if for
any PPT algorithm D (called the distinguisher) we have that

|Pr(D(Xk) = 1)− Pr(D(Y k) = 1)| < negl(k)
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where the probability is taken over the coin tosses of D and the random choices of Xk and
Y k. The absolute value above is called the advantage of D in distinguishing X from Y ,
denoted AdvD(X, Y ). ♦

Notice that in this terminology the definition of a PRG G : {0, 1}k → {0, 1}p(k) reduces
simply to saying that for a random x ∈ {0, 1}k and R ∈ {0, 1}p(k), we have

G(x) ≈ R

We give very simple properties of computational indistinguishability.

Lemma 2 If X ≈ Y and g is polynomial time computable, then g(X) ≈ g(Y ).

Proof: Assuming a PPT distibguisher D for g(X) and g(Y ), a PPT distinguisher D′(z) for
X and Y simply runs D(g(z)), which it can do since g is poly-time. Clearly, AdvD′(X, Y ) =
AdvD(g(X), g(Y )).

The next result, despite its simplicity is a foundation of a very powerful technique.

Lemma 3 If X ≈ Y and Y ≈ Z, then X ≈ Z. More generally, if n is polynomial
in k and X0 ≈ X1, X1 ≈ X2, . . ., Xn−1 ≈ Xn, then X0 ≈ Xn. More quantitively, if
some distinguisher D has AdvD(X0, Xn) = ǫ, then for some 1 ≤ i < n we have that
AdvD(Xi, Xi+1) ≥ ǫ/n.

Proof: The proof is simple but is worth giving. We give it for the last quantitive version.
Indeed, this implies the fact that X0 ≈ Xn, since if D has non-negligible advantage ǫ(k) on
X0 and Xn, then D has (still non-negligible as n is polynomial in k) advantage ǫ(k)/n on
Xi and Xi+1, which is a contradiction.

To prove the result, let pi = Pr(D(Xi) = 1). Thus, we assumed that AdvD(X0, Xn) =
|pn − p0| ≥ ǫ. But now we can use the following very simply algebra:

ǫ ≤ |pn − p0|

= |(pn − pn−1) + (pn−1 − pn−2) + . . . + (p2 − p1) + (p1 − p0)|

≤ |pn − pn−1| + |pn−1 − pn−2| + . . . + |p2 − p1| + |p1 − p0|

=
n−1
∑

i=0

|pi+1 − pi|

Notice, we simply used algebraic manipulation and nothing else. However, now we see that
for some index i, we have

|pi+1 − pi| ≥
ǫ

n

Despite its triviality, this lemma is very powerful in the following regard. Assume we
wish to prove that X ≈ X ′, but X and X ′ look somewhat different on the first glance.
Assume we can define (notice, its completely our choice!) X0 . . . Xn, where n is constant or
even polynomial in k, s.t.
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1. X0 = X, Xn = X ′.

2. For every 1 ≤ i < n, Xi ≈ Xi+1.

Then we conclude that X ≈ X ′. This simple technique is called the hybrid argument.
The reason some people have difficulty in mastering this simple technique is the following.
Usually X and X ′ are some natural distributions (say G(x) and R, as in PRG example).
However, the “intermediate” distributions are “unnatural”, in a sense that they never come
up in definitions and applications. In some sense, one wonders why a distinguisher D
between natural X and X ′ should even work on these “meaningless” distributions Xi?

The answer is that D is simply an algorithm, so it expects some input. We are free to
generate this input using any crazy experiment that we like. Of course, the behavior of D
maybe crazy as well in this case. However, technically it has to produce some binary answer
no matter how we generated the input. Of course a really malicious D may try to really
do some crazy things if it can tell that we did something he does not expect (i.e., feed it
Xi instead of X or X ′ as we were supposed to). But the point is that if for all i we have
Xi ≈ Xi+1, D really cannot tell that we generated the input according to some meaningless
distributions.

As a simple example, we prove the following very useful theorem about PRG’s which we
call the composition theorem. Now you will see how simple the proof becomes: compare it
with a direct proof!

Theorem 2 (Composition of PRG’s) If G1 : {0, 1}k → {0, 1}p(k) and G2 : {0, 1}p(k) →
{0, 1}q(k) are two PRG’s, then their composition G : {0, 1}k → {0, 1}q(k), defined as G(x) =
G2(G1(x)), is also a PRG.

Proof: We know that G1(x) ≈ r and G2(r) ≈ R, where x ∈ {0, 1}k, r ∈ {0, 1}p(k) and R ∈
{0, 1}q(k) are all random in their domains. We have to show that G(x) = G2(G1(x)) ≈ R.
We use a hybrid argument and define an intermediate distribution G2(r). First, since G2 is
polynomial time and G1(x) ≈ r (as G1 is a PRG), then by Lemma 2 we have G2(G1(x)) ≈
G2(r). Combining with G2(r) ≈ R (as G2 is a PRG), we use Lemma 3 (i.e., the hybrid
argument) to conclude that G2(G1(x)) ≈ R, i.e. that G a PRG.

Finally, so far we said that X0 ≈ X1 if no distingusiher D can “behave noticeably
differently” when given a sample of X0 as opposed to a sample of X1. Here is anollowing
equivalent view of this fact, stating that D can behave differently on X0 and X1 only if it
effectively can tell whether or not it is given a sample of X0 as opposed to sample of X1

with probability noticeably different from 1/2.

Lemma 4 X0 ≈ X1 if and only if, for any efficient distingusisher D,
∣

∣

∣

∣

Pr(D(Z) = b | b
r
← {0, 1}, Z

r
← Xb)−

1

2

∣

∣

∣

∣

≤ negl(k)

Proof: We have
∣

∣

∣

∣

Pr(D(Z) = b | b
r
← {0, 1}, Z

r
← Xb)−

1

2

∣

∣

∣

∣

=
1

2
· |Pr(D(X1) = 1) + Pr(D(X0) = 0)− 1|

=
1

2
· |Pr(D(X1) = 1)− Pr(D(X0) = 1)|
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In the sequel we will interchangeably use both of these equivalent formulations of indis-
tinguishability.

3 Next-Bit ⇒ PRG (Proof of Theorem 1)

Before proving this result, let us introduce some useful notation. Assume the input x is
chosen at random from {0, 1}k. Let n = p(k), G(x) = g1 . . . gn be the output of G, and
Gi = g1 . . . gi be the first i bits of G(x). We also denote by Rs a truly random string of
length s. We will also often omit the concatenation sign (i.e., write GiRn−i in place of
Gi ◦Rn−i).

We will split the proof into two steps. The first step uses the hybrid argument to reduce
our problem to showing indistinguishability of n pairs of distributions, each related to some
specific output bit 1 ≤ i ≤ n of G. Later we will show that each of these pairs is indeed
indistinguishable by using the unpredictability of the corresponding bit i of G.

3.1 Stage 1: Hybrid Argument

Let us see what we have to show. We have to show that G(x) ≈ R, which in our notation
means Gn ≈ Rn. We use the hybrid argument with the following intermediate distributions:

X0 = Rn, X1 = G1Rn−1 , . . . , Xi = GiRn−i , . . . , Xn−1 = Gn−1R1 , Xn = Gn

More graphically,

Rn = r1 r2 . . . ri−1 ri ri+1 . . . rn−1 rn

G1Rn−1 = g1 r2 . . . ri−1 ri ri+1 . . . rn−1 rn

...
...

...
Gi−1Rn−i+1 = g1 g2 . . . gi−1 ri ri+1 . . . rn−1 rn

GiRn−i = g1 g2 . . . gi−1 gi ri+1 . . . rn−1 rn

...
...

...
Gn−1R1 = g1 g2 . . . gi−1 gi gi+1 . . . gn−1 rn

Gn = g1 g2 . . . gi−1 gi gi+1 . . . gn−1 gn

Since n = p(k) is polynomial in k and X0 = Rn, Xn = Gn, by the hybrid argument we only
have to show that for every 1 ≤ i ≤ n, we have Gi−1Rn−i+1 ≈ GiRn−i. We will do it in
the next step, but notice (see the table above) how similar these two distributions are: they
are only different in the i-st bit. In other words, both of them are of the form Gi−1bRn−i,
where b is either the “next bit” gi or a truly random bit ri. Not surprisingly, the fact that
they are indistinguishable comes from the unpredictability of gi given Gi−1. Looking ahead,
Gi−1 is the legal input to our next bit predictor P , while Rn−i can be easily sampled by
the predictor P itself!
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3.2 Stage 1.5: defining the predictor

To complete the proof, we have to show that Gi−1Rn−i+1 ≈ GiRn−i. For this it suffices to
show that if there exists a PPT distinguisher A for the above two distributions (that has non-
negligible advantage δ), then there exists a PPT next-bit predictor P for gi given Gi−1, which
would contradict the next-bit unpredictability for G. So assume such A exists. Assume
without loss of generality that Pr[A(Gi−1Rn−i+1) = 0] = q, and that Pr[A(GiRn−i) = 0] =
q + δ (that is, we are assuming w.l.o.g. that A outputs 0 more often when the i-th bit is
from G rather than random; if not, simply rename q to 1−q and swap 0 and 1 in the output
of A). Now, some shortcuts in notation.

Whenever we will run A, the first (i− 1) bits come from the generator, last (n− i) bits
are totally random, i.e. only the i-th bit is different. So we denote by A(b), b ∈ {0, 1},
running A(Gi−1bRn−i). Note, that when running A(b) several times, we always leave the
same prefix Gi−1 that was given to us at the beginning, but always put brand new random
bits in the last (n − i) positions. Now we denote by r ∈ {0, 1} a random bit (to represent
ri) and by g = gi — the i-th bit of G, where the seed is chosen at random. Hence, we know
that

Pr(A(g) = 0)− Pr(A(r) = 0) ≥ δ

Now, let us recap where we stand. We are trying to build P that will guess g. P can run
A(0) or A(1). P knows that A(g) is more likely to be 0 than A(r) (for a random bit r). So
how can P predict g? It turns out that there are several ways that work. Here is one of
them.

P picks a random r and runs A(r). If the answer is 0, it seems likely that g = r, since
A(g) is more likely to be 0 than A(r). So in this case P guesses that g = r (i.e. outputs
the value of r). If, on the other hand, A(r) returns 1, it seems like it is more likely that g
is the compliment of r, so we guess g = 1 − r. This is our entire predictor, and let us call
its output bit B. We wish to show that Pr[B = g] ≥ 1

2 + δ.

To put our intuition differently, A(r) a-priori outputs 0 less often than A(g). Thus, if
A(r) returned 0, this gives us some a-posteriori indication that r = g.

3.3 Stage 2: proving our predictor is good

Let us now show that P works. The proof is quite technical. Keep in mind though, that
what we are doing is simply an exercise in probability, our intuition is already in place!

Let z = Pr[g = 0] (where the probability is over random seed x). We introduce the
following “irreducible” probabilities:

βjk := Pr[A(j) = 0 | g = k], j, k ∈ {0, 1} (3)

The reason that this probabilities are important is that we will have to analyze the
expression Pr[P (Gi−1) = g], and therefore, will have to immediately condition on the value
of g, i.e. g = 0 or g = 1. And since P runs A, the needed probability will indeed be
some function of z and βjk’s. We note that all 4 probabilities in (3) are generally different.
Indeed, conditioning on a particular setting of g skews the distribution of the first (i − 1)
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bits Gi−1. We start by expressing our given probabilities in terms of “irreducible” ones (in
both formulas in the last step we condition over g = 0 or g = 1):

q = Pr[A(r) = 0]

=
1

2
(Pr[A(0) = 0] + Pr[A(1) = 0])

(3)
=

1

2
(zβ00 + (1− z)β01 + zβ10 + (1− z)β11)

q + δ = Pr[A(g) = 0]

(3)
= zβ00 + (1− z)β11

Subtracting the first equation from the second, we get the main equality that we will use:

δ =
z(β00 − β10) + (1− z)(β11 − β01)

2
(4)

Now, let us return to the analysis of P (recall, it chooses a random r, runs A(r) and
then decides if it output B = r or B = 1− r depending on whether or not the answer is 0).
The probabilities of P ’s success for a fixed r = 0 or r = 1 are:

Pr[B = g | r = 0] = z Pr[A(0) = 0 | g = 0] + (1− z) Pr[A(0) = 1 | g = 1]

(3)
= zβ00 + (1− z)(1− β01)

= (1− z) + zβ00 − (1− z)β01.

Pr[B = g | r = 1] = z Pr[A(1) = 1 | g = 0] + (1− z) Pr[A(1) = 0 | g = 1]

(3)
= z(1− β10) + (1− z)β11

= z − zβ10 + (1− z)β11.

Hence, conditioning on random bit r, the overall probability of P ’s success is

Pr[B = g] =
1

2
Pr[B = g | r = 0] +

1

2
Pr[B = g | r = 1]

=
1

2
(z + (1− z) + zβ00 − (1− z)β01 − zβ10 + (1− z)β11)

=
1

2
+

z(β00 − β10) + (1− z)(β11 − β01)

2
(4)
=

1

2
+ δ

This completes the proof. One remark is in place, though. Despite its technicality, the
proof is quite intuitive. Unfortunately, it seems like the “right” expressions are magically
appearing at the “right” places. This is just an illusion. There are several other intuitive
predictors, and all come up to the same expressions. Unfortunately, having four probabilities
βjk indeed seems to be necessary.

4 Consequences

Having proven that next-bit unpredictability ⇒ PRG, and using Lemma 1, we get
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Corollary 5 G′ and G defined by Equation (1) and Equation (2) are PRG’s.

Notice, however, that G′ and G are very inconvenient to evaluate. Specifically, we (1)
have to know n in advance, and (2) have to output the bits in reverse order, so that we
have to wait for n steps before outputting the first bit. It would be much nicer if we could
output the hardcore bits in the natural “forward order”. But now, using Corollary 5, we
can! Indeed, redefine

G′(x) = h(x) ◦ h(f(x)) ◦ . . . ◦ h(fn−1(x)) (5)

G(x) = G′(x) ◦ fn(x) = h(x) ◦ h(f(x)) ◦ . . . ◦ h(fn−1(x)) ◦ fn(x) (6)

From the definition of a PRG, it is clear that the order of the output bits does not matter
— a PRG remains pseudorandom no matter which order we output its bits. For the sake of
exercise, let us show this formally for G′ (similar argument obviously holds for G). Clearly,
it suffices to show that

Lemma 6 If F (x) = g1 . . . gn is a PRG, then so is H(x) = gn . . . g1.

Proof: Let rev(g1 . . . gn) = gn . . . g1. Since rev is poly-time computable, by Lemma 2 we
have H(x) ≡ rev(G(x)) ≈ rev(R) ≡ R, showing that H is a PRG.

Theorem 3 G′ and G defined by Equation (5) and Equation (6) are PRG’s, provided f is
a OWP and h is its hardcore bit.

Notice, we can now evaluate G′ and G much more efficiently. Simply keep state s = f i(x)
after outputting i bits, then output bit h(s) as the next bit, and update the state to s = f(s).
Moreover, to evaluate G′ we do not even need to know n in advance! We can get as many
bits out as we wish! On the other hand, the moment we are sure we do not need many
more bits from G′, we can simply output our current state s = fn(x) (for some n), and get
the output of G instead. This will save us k evaluations of our OWP. However, it seems
like using G′ is still much better that using G since we can keep going forever (with G, we
cannot go on with the current seed x the moment we reveal fn(x)). The pseudo-code is
summarized below.

Pick a random seed x1 ←
r {0, 1}k;

repeat until no more bits are needed
output next bit pseudorandom bit bi = h(xi);
update the seed xi+1 := f(xi);
i := i + 1;

end repeat
If want the last chunk of k bits, output the current seed xi;

5 Examples

We discuss two specific examples of pseudorandom generators induced from familiar OWP’s.
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5.1 Blum/Micali Pseudo-Random Generator

The Blum/Micali generator uses the candidate OWP EXPp,g(x) to generate a pseudo-
random string. Namely, we recognize that if xi+1 = gxi mod p, the MSB(x) is always
hardcore.

5.2 Blum/Blum/Shub Pseudo-Random Generator

Next, we look at the Blum/Blum/Shub Generator, which uses the proposed OWF SQn(x) =
x2 mod n where n is a Blum integer (ie the product of two primes p and q such that
p ≡ q ≡ 3 mod 4. The restriction on n to be a Blum integer comes from the fact that
(x2 mod n) becomes a permutation when restricted to the subgroup of quadratic residues
QRn of Z

∗

n. We mentioned that under the assumption that SQn : QRn → QRn is a OWP,
the LSB(x) is a hardcore bit for SQn, and this defined the Blum-Blum-Shub generator.
Notice, xi+1 = x2i

mod n. As you show in the homework, xi+1 is very easy to compute
directly when given the factorization of n (i.e. without iterating SQn for i times). Also,
each next bit requires only one modular multiplication. Finally, one can show that it is
safe to use simultaneously even up to log k least significant bits of each xi, making the BBS
generator even more efficient.

By comparison we look at a linear congruential generator of the form based on (fn(x) =
(ax + b) mod n), where a, b are chosen at random, which seems very similar but which in
fact proves insecure. The contrast shows us the importance of building a general theory.
We see that BBS is secure since LSB(x) is a hardcore bit for SQn, while one of the reasons
the once-popular linear congruential generator is insecure, is the fact that LSB(x) is not its
hardcore bit. Without this understanding, we would have hard time a-priori to say which
generator is better.

6 PRG’s and OWF’s

First, we notice that

Lemma 7 The existence of a PRG which stretches {0, 1}k → {0, 1}k+1 implies the existence
of a PRG which stretches {0, 1}k → {0, 1}p(k)

For example, this follows from the repeated iteration of the composition theorem Theorem 2:
simply call G repeatedly on its own output for p(k) times (notice, the adversary’s advantage
increases by a polynomial factor p(k), and hence remains negligible). Thus we see that the
assumption that PRG exists is universal and the actual expansion is unimportant.

But now we can ask the question of finding the necessary and sufficient conditions for
the existence of PRG’s. We proved that OWP ⇒ PRG. In your homework you show that
PRG ⇒ OWF. There is a very celebrated result (omitted due to its extremely complicated
proof) which shows that in fact OWF ⇒ PRG. This gives us the dramatic conclusion that

Theorem 4 OWF ⇐⇒ PRG

This is extremely interesting because we see that two of the main primitives that we have
introduced (namely OWF and PRG) are in fact equivalent despite their disparate appear-
ances.
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7 Forward Security

Next we introduce the important notion of forward security. First, recall the iterative
construction of G′(x) in Equation (5). Every time we output the next bit bi = h(xi), we
also update our state to xi+1 = f(xi). We also noticed that at every moment of time n,
we can simply output xn+1 = fn(x) and still get a secure PRG G(x). To put it in different
context, our current state xn+1 looks completely uncorrelated with the previously output
bits G′(x). Namely, even if we manage to loose or expose our current state, all the previously
output bits remain pseudorandom!

This is exactly the idea of forward-secure PRG’s formally defined below.

Definition 4 [Forward Secure PRG] A forward-secure PRG with block length t(k) is a poly-
time computable function F : {0, 1}k → {0, 1}k×{0, 1}t(k), which on input si — the current
state at period i ≥ 1 — outputs a pair (si+1, bi), where si+1 is the next state, and bi are
the next t(k) pseudorandom bits. We denote by N(s) the next-state function, by B(s) the
next t(k) pseudorandom bits output, by Fi(s1) = B(s1)B(s2) . . . B(si) the pseudorandom
bits output so far, and by Ri — a random string of length {0, 1}i·t(k). We require for any
i < poly(k) that when the initial state s1 is chosen at random from {0, 1}k, we have

(Fi(s1), si+1) ≈ (Ri, si+1)

♦

For example, when used for symmetric key encryption, a forward-secure generator im-
plies that loosing the current key leaves all the previous “one-time pad” encryptions secure.

We notice that our generic PRG G′ from Equation (5) and its efficient implementation
naturally leads to a forward-secure generator with block length 1: F (s) = (f(s), h(s)), i.e.
the next state is f(s) and the next bit is h(s). The proof of forward security immediately
follows from the fact that G from Equation (6) is a PRG (check this formally as an exercise).

Finally, we notice that one can also build a forward-secure PRG with any polynomial
block length t(k) from any regular PRG G : {0, 1}k → {0, 1}t(k)+k. If we let G(s) =
G1(s) ◦ G2(s), where |G1(s)| = |s| = k, then G by itself is a forward-secure generator
G(s) = (G1(s), G2(s)). Namely, we use G1(s) as the next state, and G2(s) as the t(k) bits
we output.

Theorem 5 Forward-secure PRG’s with any polynomial block length 1 ≤ t(k) < poly(k)
exist ⇐⇒ regular PRG’s exist (⇐⇒ OWF’s exist).

We leave the proof of this fact as an exercise.

8 PRG’s in Our Lives

As a final note we would like to emphasize how common (and important!) PRG’s are in
real life. In computing, most requests for “random” sequence in fact access a pseudorandom
sequence. Indeed, to uise randomness in most computer languages we first make a call to
the function randomize, which initializes some PRG using only a small (and hopefully) truly
random seed. All the subsequent random calls are in fact deterministic uses of a PRG, which
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outputs the next “random-looking sequence” (and possibly updates its state). Hence, since
what we usually take for random is in fact some deterministic sequence generated by a
PRG, we see that it is very important to understand what constitutes a good PRG. Which
is exactly what we have spent the past two weeks investigating.

Finally, we recap our discussion of PRG’s by reminding that they can be used without
much harm in any realistic (i.e., efficient) application which expects truly random bits.
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1 Public-Key Encryption

Last lecture we studied in great detail the notion of pseudorandom generators (PRG), a
deterministic functions that stretch randomness by any polynomial amount: from k to p(k)
bits. As we already indicated, PRG’s have a lot of applications including constructions
of both public- and private-key encryptions, and implementation of “ideal randomness”
in essentially any programming language. In this lecture we will begin examining these
application in more detail by starting with the formal study of public-key encryption (PKE).
As we explained before, the informal scenario is this:

• Before the Encryption. Alice publishes to the world her public key PK. Therefore,
both Bob and Eve know what PK is. This public key is only used to encrypt messages,
and a separate key SK is used to decrypt messages. (This is unlike the Secret-Key
scheme where one key S is used to both encrypt and decrypt.) Only Alice knows what
SK is, and nobody else, not even Bob.

• Encryption. When Bob wishes to send Alice a plaintext message M via the Internet,
Bob encrypts M using Alice’s public key PK to form a ciphertext C. (Formally, we
summarize encryption with PK as EPK and say that C = EPK(M).) Bob then sends
C over the Internet to Alice.

• Decryption. Upon receiving C, Alice uses her secret private key SK to decrypt C,
giving her M , the original plaintext message. (Formally, we summarize decryption
with SK as DSK and say that DSK(C) = DSK(EPK(M)) = M .)

• Eve’s Standpoint. Unlike the Secret-Key scheme, Eve knows everything Bob knows
and can send the same messages Bob can. And, only Alice can decrypt. And, when
Bob sends his message, Eve only sees C, and knows PK in advance. But, she has no
knowledge of SK. And, if it is hard for Eve to learn about SK or plaintexts based
on ciphertexts and PK, then our system is secure.

2 Definition of Public-key Encryption

We start with the syntax of a public-key encryptions scheme, and only later talk about its
security. Definition 1 [Public-key encryption (PKE)] A PKE is a triple of PPT algorithms

E = (Gen,E,D) where:
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1. Gen is the key-generation algorithm. Gen(1k) outputs (PK,SK,Mk), where SK is
the secret key, PK is the public-key, and Mk is the message space associated with
the PK/SK-pair. Here k is an integer usually called the security parameter, which
determines the security level we are seeking for (i.e., everybody is polynomial in k and
adversary’s “advantage” should be negligible in k).

2. E is the encryption algorithm. For any m ∈ Mk, E outputs c
r
← E(m; PK) — the

encryption of m. c is called the ciphertext. We sometimes also write E(m; PK) as
EPK(m), or E(m; r, PK) and EPK(m; r), when we want to emphasize the random-
ness r used by E.

3. D is the decryption algorithm. D(c; SK)
r
→ m̃ ∈ {invalid}∪Mk is called the decrypted

message. We also sometimes denote D(c; SK) as DSK(c), and remark that usually
D is deterministic.

4. We require the correctness property: if everybody behaves as assumed

∀m ∈Mk, m̃ = m, that is DSK(EPK(m)) = m

♦

Example: RSA. Let us check that RSA satisfies the above definition. Notice, both E and
D are deterministic.

1. Gen(1k) corresponds to the following algorithm: (p, q) are random primes of k bits,
n = pq, e

r
← Z

∗

ϕ(n), d = e−1 mod ϕ(n), Mk = Z
∗

n. Set PK = (n, e), SK = d.

2. c = E(m; (n, e)) = me mod n.

3. m̃ = D(c; (d, n)) = cd mod n.

More generally, we could construct a PKE from any TDP. Suppose we have a TDP f
with trap-door information tk and algorithm I for inversion. Here is the induced PKE:

1. Gen(1k)
r
→ (f, tk, {0, 1}

k), and f is the PK and the trapdoor tk is the SK.

2. E(m; PK) = f(m).

3. D(m; SK) = I(c, tk).

Conventions about message spaces Mk. Without loss of generality we will assume
that the message space Mk can be determined from the public key PK (so we will not
explicitly output its desciption in Gen). Also, in many schemes the message space Mk does
not depend on the particular public key PK and depends only on k, e.g. Mk = {0, 1}
and Mk = {0, 1}k. In the latter cases we will sometimes say that E is an encryption for a
sequence of message spaces {Mk}. Notice, however, that in most concrete examples (i.e.,
in the RSA example above), Mk could depend on the PK. As we will see, this will create
some definitional issues when defining security of encryption.
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Problems. The problem of the above general construction is that it does not meet our
requirement of security.

• First, it reveals partial information. For example, in the RSA case, f(m) preserves
the Jacobi symbol of m. Furthermore, if f ′ is a TDP f(a, b) = (a, f ′(b)) is also a TDP

however it reveals half of the input message.

• Second, our definition of TDP is based on the assumption of uniform distribution of
the input. Here, it corresponds to the uniformity of the distribution on the message
space. However, in practice, such uniformity is rarely satisfied, and in some interesting
cases, the message spaces is actually quite sparse, for example, the English text.

• Third, when the message space is sparse (i.e., sell/buy), this method is completely
insecure and can be broken by a simple exhaustive search.

• Many more problems exist. For example, the adversary can tell whether the same
message is being sent twice or not.

For completeness, we would like to point out the general construction does satisfy a very
weak security notion.

Definition 2 [One-way secure encryption] A PKE E is called one-way secure if it is hard
to completely decrypt a random message. Formally, for any PPT A

Pr(A(c) = m | (SK,PK)
r
← Gen(1k),m

r
←Mk, c

r
← EPK(m)) ≤ negl(k)

♦

Here is a simple lemma directly from the definitions of TDP that shows

Lemma 1 If Mk = {0, 1}k is the domain of a TDP f , then the PKE induced from f is
one-way secure.

Conclusions.

• Much stronger definition is needed in order not to reveal partial information.

• Encryption scheme cannot be deterministic in order to solve the problem of non-
uniform/sparse message space.

• Even starting with 1-bit encryption, Mk = {0, 1}, is interesting and non-trivial.

3 Secure encryption of one bit

From the previous section, we discussed the problems with one-way security and the straight-
forward usage of a TDP. In order to have a stronger definition, let us first begin from from
trying to encrypt one bit, i.e. Mk = {0, 1}.

One of the conclusions we had is that the encryption scheme must be probabilistic. For
each bit from Mk = {0, 1}, there is cloud of messages in the encrypted message space C
corresponding to that bit. Informally, we want the distribution of these two clouds to be
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indistinguishable to the adversary even conditioned on the public key PK and even though
their supports are totally disjoint (the disjointness is from the fact that we want to decrypt
the message without ambiguity). We write it as 〈PK,EPK(0)〉 ≈ 〈PK,EPK(1)〉, where
EPK(0) and EPK(1) are two random variables denoting random encryption of 0 and 1
respectively. Notice this is not possible in the Shannon theory, because there the adversary
has infinite power and the only way for the distribution to be indistinguishable is that they
are exactly the same, which is not the case since the supports of two distributions are totally
different. However, in our case it is doable because we assume the adversary is only PPT.
We also point out that when the public key PK is clear, we will sometime be sloppy and
simply write E(0) ≈ E(1), always implicitly assuming that PK is public knowledge. Here
is the formal definition.

Definition 3 A PKE forMk = {0, 1} is called polynomially indistinguishable if 〈PK,EPK(0)〉 ≈
〈PK,EPK(1)〉, meaning that ∀ PPT A

∣

∣

∣
Pr(A(c, PK) = 1 | (SK,PK)

r
← Gen(1k), c

r
← EPK(0)) −

Pr(A(c, PK) = 1 | (SK,PK)
r
← Gen(1k), c

r
← EPK(1))

∣

∣

∣
≤ negl(k)

Or equivalently,

∣

∣

∣

∣

Pr(A(c, PK) = b | (SK,PK)
r
← Gen(1k), b

r
← {0, 1}, c

r
← EPK(b))−

1

2

∣

∣

∣

∣

≤ negl(k)

♦

Example. Suppose f is a TDP with trapdoor information tk and efficient algorithm I for
inversion, and h is a hardcore bit for f . Here is the PKE we informally considered earlier:

1. Gen(1k)
r
→ (f, tk).

2. E(b)→ 〈f(x), h(x)⊕ b〉 = 〈y, d〉. (x is random in {0, 1}k).

3. D(〈y, d〉, tk) : x = I(y, tk), b = d⊕ h(x).

Here is another, slightly more efficient suggestion:

1. Gen(1k)
r
→ (f, tk).

2. E(b): sample x
r
← {0, 1}k until h(x) = b, then set ciphertext y = f(x).

3. D(y): recover x
r
← I(y, tk), then decrypt b̃ = h(x).

Notice, E is efficient, since sampling the right x will terminate after approximately two
trials, since h must be balanced between 0 and 1. We analyze these schemes formally later
(or in the homework).
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4 Secure Encryption of Many bits

Now, we will consider the case Mk = {0, 1}p(k), where p is some polynomial in k. The
definition is an obvious generalization of the “bit” version.

Definition 4 [Polynomial indistinguishability] A PKE E for Mk = {0, 1}p(k) is called
polynomially indistinguishable (against PK-only attack) if for any m0,m1 ∈ Mk, we have
〈PK,EPK(m0)〉 ≈ 〈PK,EPK(m1)〉. Formally, ∀PPT A

∣

∣

∣

∣

Pr(A(c, PK) = b | (SK,PK)
r
← Gen(1k), b

r
← {0, 1}, c

r
← EPK(mb))−

1

2

∣

∣

∣

∣

≤ negl(k)

♦

Comments.

• The definition includes the situation when m0 and m1 are the same. In this case, no
matter b = 0 or b = 1, E and A will know nothing about what b is, because they only
see the message mb, which is the same, no matter b = 0 or b = 1.

• As will will see this definition is extremely robust and prevents a lot of attacks. For
example, it also excludes the possibility for the adversary to tell whether a message was
being sent twice. Informally, if A could determine this, when given c, A can generate
c′ ← E(m0), and see if c and c′ correspond to the same message, thus determining if
b = 0.

Blum-Goldwasser construction. In the Blum-Goldwasser construction, as we men-
tioned earlier, we are given a TDP f with trapdoor tk, inversion algorithm I, and a hardcore
bit h. Recall also that if we let G(x) = G′(x) ◦ f (n)(x), where G′(x) = h(x) ◦h(f1(x)) ◦ · · · ◦
h(f (n−1)(x)), then both G and G′ are PRG’s. We define:

1. PK = f and SK = tk.

2. E(m): get x
r
← {0, 1}k, send c = (G′(x)⊕m, f (n)(x)).

3. D(c): use tk to get f (n−1)(x), . . . , f(x), x, and use them to calculate G′(x) with hard-
core bit function h. After we have G′(x), recovering m is clear.

To check the correctness of Blum-Goldwasser construction, we need to prove that for all
m0 and m1 (below we omit PK = f since it’s fixed)

E(m0) ≡ (f (n)(x), G′(x)⊕m0) ≈ (f (n)(x), G′(x)⊕m1) ≡ E(m1) (1)

In order to prove this, we will instead prove a more general lemma.

Lemma 2 (One-Time Pad Lemma) Let R denote the uniform distribution. Then for
all distributions X,Y (not necessarily independent!), if (X,Y ) ≈ (X,R), then for all m0

and m1 we have (X,Y ⊕m0) ≈ (X,Y ⊕m1).
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Proof: The simplest proof is to notice that for any fixed message m, R⊕m ≡ R, where R is
a random string. I.e., “random+fixed=random”. Thus, since XOR is an efficient operation,

(X,Y ⊕m0) ≈ (X,R⊕m0) ≡ (X,R) ≡ (X,R⊕m1) ≈ (X,Y ⊕m1)

We see that Lemma 2 indeed implies the needed Equation (1). Indeed, consider X =
f (n)(x), Y = G′(x). Then, to apply Lemma 2, we only need to argue that (f (n)(x), G′(x)) ≈
(f (n)(x), R′), where R′ is random. But since f is a permutation and x is random, f (n)(x)
is just a random string, so (f (n)(x), R′) ≡ R, and we just need to show that G(x) =
f (n)(x) ◦G′(x) is a PRG, which is precisely what we showed last time. Thus, we get

Theorem 1 BG construction above defines a polynomially indistinguishable encryption.

As a special case, we also get the security of the one-bit version of BG encryption that
we considered in the previous section.

Efficient example: squaring over Blum integers. Recall, the Blum-Blum-Shub con-
struction of G′ uses the OWF SQ(x) = x2 mod n. This function is a TDP when n = pq with
p = 3 mod 4 and q = 3 mod 4. Specifically, it can be proved that it is a permutation on
SQn, and the trapdoor key is the factorization (p, q) of n = pq. The associated hardcore bit
is the least significant bit of x. Now we see that this construction is quite efficient, because
in order to encrypt p(k) bits, we only need to do p(k) multiplications mod n.

5 Key Encapsulation Mechanism

The BG example above follows the following key encapsulation principle which we will meet
in virtually any public-key encryption scheme. The idea is to derive a “radom-looking” key
s and its “encryption”, and then use s to “one-time pad the message”. For example, in the
BG scheme above, the key s was equal to G′(x), while the “encryption” of s was the value
ψ = f (n)(x). A bit more formally,

Definition 5 [Key Encapsulation Mechanism (KEM)] A Key Encapsulation Mechanism is
a triple of PPT algorithms E = (Gen,KE,KD) where:

1. Gen is the key-generation algorithm. Gen(1k) outputs (PK,SK,Mk), where SK is
the secret key, PK is the public-key, and Mk is the “key space” associated with the
PK/SK-pair.

2. KE is the key encapsulation algorithm. It takes the public key PK and outputs a pair
〈ψ, s〉

r
← KE(PK), where s ∈Mk is a key and ψ is called the ciphertext representing

encryption of s. We sometimes write 〈ψ, s〉 = KEPK(r) to emphasize the randomness
r used by KE.

3. KD is the key decapsulation algorithm. KD(ψ; SK)
r
→ s̃ ∈ {invalid}∪Mk attempts to

extract a key from the ciphertext ψ. We sometimes denote KD(ψ; SK) as KDSK(ψ),
and remark that usually KD is deterministic.
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4. We require the correctness property: if 〈ψ, s〉
r
← KE(PK), then KD(ψ, SK) = s.

♦

As we mentioned, in the BG example, KE(x) uses random x to set s = G′(x), ψ =
f (n)(x), while KD(ψ) = G′(f (−n)(ψ)).

The usefulness of KEM comes from the fact that it immediately yields a PKE, by using the
symmetric key s to encrypt the messagem. For concreteness, below we assumeMk = {0, 1}n

for some parameter n = p(k) (like in the BG case), and we will use the one-time pad
encryption to encrypt m (although later we will see that any symmetric-key encryption will
do!). But first we need a definition of security for KEM.

Definition 6 [Polynomial indistinguishability] A KEM (Gen,KE,KD) forMk = {0, 1}p(k)

is called polynomially indistinguishable (against PK-only attack) if for randomly generated
PK and 〈ψ, s〉 ← KE(PK) we have 〈PK,ψ, s〉 ≈ 〈PK,ψ,R〉, where R is a fresh random
string sampled from Mk. Formally, ∀PPT A

Pr(A(ψ, sb, PK) = b | (SK,PK)
r
← Gen(1k), b

r
← {0, 1},

(ψ, s0)
r
← KE(PK), s1

r
← {0, 1}p(k))

≤
1

2
+ negl(k)

♦

Lemma 3 Assume (Gen,KE,KD) is polynomially indistinguishable KEM for {0, 1}n. Then
the following PKE is polynomially indistinguishable for {0, 1}n:

• key generation Gen is the same as in KEM.

• encryption E(m): compute 〈ψ, s〉 ← KE, and let c = 〈ψ,m⊕ s〉.

• decryption D(ψ, z) = z ⊕KD(ψ).

Proof: The proof immediately follows from the One-Time Pad Lemma, where X =
(PK,ψ), and Y = s.

We will see several other applications of the KEM paradigm. In particular, we will see
that the one-time pad can be replaced by any (one-time) secure symmetrci-key encryption.
As a concrete illustration, we can apply it to the symmetric scheme Es(m) = G(s) ⊕ m,
where G is any PRG. Although we did not yet prove that this scheme is secure, we directly
prove that it yields a good KEM.

Lemma 4 Assume (Gen,KE,KD) is polynomially indistinguishable KEM for {0, 1}k and
G is a PRG from {0, 1}k to {0, 1}n. Then the following (Gen′,KE′,KD′) is a polynomially
indistinguishable KEM for {0, 1}n:

• Gen′ = Gen.

• KE′(PK): compute 〈ψ, s〉 ← KE(PK), and let ψ′ = ψ, s′ = G(s). Output 〈ψ′, s′〉.
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• KD′(ψ′) = G(KD(ψ′)).

We leave the proof as a simple exercise in the hybrid argument. We also remark that
a trivial generalization of the above result shows that any polynomially indistinguishable
encryption (Gen,E,D) on {0, 1}k can be combined with any secure PRG from k to n
bits to directly give a polynomially indistinguishable encryption (Gen,E′, D′) on {0, 1}n:
simply pick a random k-bit key s, encrypt it using E, and append G(s)⊕m to obtain the
encryption of m. This shows that one can, in principle, only show how to encrypt relatively
short messages, and then be able to encrypt much longer messages, provided a good PRG

is availble.

6 General transformation from one bit to many bit

Blum-Goldwasser construction shows that given a TDP, we could transfer many bits, by
efficiently generalizing the corresponding original BG scheme to encrypt one bit. More
generally, the above discussion following Lemma 4 shows that we only need to encrypt
messages roughly as long as the security parameter to be able to encrypt much longer
messages. However, suppose we have some PKE scheme for one bit, which possibly does
not depend on any TDP and does not seem to obviously generalize to encrypt many bits.
In fact, assume that the only thing we know about it is that it is indistinguishable one-bit
encryption. Is it possible for us to use this scheme to encrypt many bits without using any
other assumptions on this scheme? A naive answer is to regard each bit to be a separate
message and encrypt it using the PKE scheme for one bit. Luckily, this naive approach works
for public key encryption.1 Formally, let E = (Gen,E,D) be a polynomial indistinguishable
PKE scheme for one bit, we could define a PKE scheme E ′ = (Gen′, E′, D′) for Mk = {0, 1}n

(n = p(k) for some polynomial p) as follows:

1. Gen′(1k) = Gen(1k) → (PK,SK), i.e. PK and SK are generated in the same
way as before Gen, except the message space now is Mk = {0, 1}p(k). Now, given
m ∈Mk = {0, 1}n, we denote m as m1m2 · · ·mn.

2. Define E′

PK(m1m2 · · ·mn) = (EPK(m1), EPK(m2), · · · , EPK(mn))→ c1c2 · · · cn = c.

3. Define m̃ = D′

SK(c1c2 · · · cn) = (DSK(c1), DSK(c2), · · · , DSK(cn))

And it turns out that this bit-by-bit encryption indeed works!

Theorem 2 If E is polynomially indistinguishable for one bit, then E ′ is polynomial indis-
tinguishable for n = p(k) bits.

Proof: Take two messages m0 and m1. We first construct a sequence of intermediate
messages that slowly go from m0 to m1:

M0 = m1
0 m2

0 . . . mn−1
0 mn

0

M1 = m1
1 m2

0 . . . mn−1
0 mn

0
...

...

Mn−1 = m1
1 m2

1 . . . mn−1
1 mn

0

Mn = m1
1 m2

1 . . . mn−1
1 mn

1

1As we will see, things are a bit more complex in the symmetric key setting.

Lecture 6, page-8



Notice, M0 = m0 and Mn = m1. Also, Mi−1 and Mi differ in at most one bit — bit number
i. We now define a sequence of distributions

Ci ← E′(Mi) = E(m1
1) . . . E(mi

1)E(mi+1
0 ) . . . E(mn

0 )

Using the hybrid argument, in order to prove that (we omit the PK from all the distributions
for compactness)

E′(m0) = E′(m1
0m

2
0 · · ·m

n
0 ) ≈ E′(m1

1m
2
1 · · ·m

n
1 ) = E′(m1)

i.e. C0 ≈ Cn, we only need to show that for any i, we have Ci−1 = E′(xi−1) ≈ E
′(xi) = Ci.

Graphically,

Ci−1 = E(m1
1) . . . E(mi−1

1 ) E(mi
0) E(mi+1

0 ) . . . E(mn
0 )

Ci = E(m1
1) . . . E(mi−1

1 ) E(mi
1) E(mi+1

0 ) . . . E(mn
0 )

Now, let A = E(m1
1) ◦ . . . ◦ E(mi−1

1 ), B = E(mi+1
0 ) ◦ . . . ◦ E(mn

0 ). Thus, we only need to
show that

(PK,E(mi
0), A,B) ≈ (PK,E(mi

1), A,B)

But this is obvious now! Since by our assumption on (Gen,E,D), we have (PK,EPK(mi
0)) ≈

(PK,E(mi
1)), and since both A and B can be computed in polynomial time with the knowl-

edge of PK (i.e., (A,B) = g(PK) for some efficient function g), we immediately get the
desired conclusion.

To recap the whole proof, we used the fact that if one can distinguish between encryp-
tions of two long messages encrypted bit-by-bit, there must be some particular index i that
gives the adversary this advantage, but this contradicts the bit security of our base encryp-
tion scheme. Also, notice that we loose a polynomial factor p(k) = n in security by using
the hybrid argument, but this is OK since n is polynomial.

Remark 1 We notice that the above one-bit to many-bit result is false for private-key
encryption (which we did not cover formally yet). For example, consider the one-time pad
with secret bit s and Es(b) = b ⊕ s. We know it is perfectly secure. However, if we are to
encrypt two bits using s, c1 = b1 ⊕ s and c2 = b2 ⊕ s, then c1 ⊕ c2 = b1 ⊕ b2, so we leak
information. The key feauture of the public-key encryption that makes the result true is
the fact that anyone can encrypt using the public key, which is false in the private-key case
(check that this is the place where the proof fails).

Remark 2 Although we stated the result for one-bit to many-bits, it is clearly more general.
In particular, if we have an indistinguishable encryption of b bits, then we easily get an
indistinguishable encryption of bn bits, for any n = poly(k), by simply splitting the message
into n chucks of b bits each, ach encrypting each chunk separately.
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7 Chosen Plaintext Secuirty

We have been careful so far to only state the notion of polynomial indistinguishability for the
message space {0, 1}n. However, most practical encryption scheme have general message
spaces, which usually depends on the specific public key we choose at key generation.
Initially, it seems like it is trivial to generalize our definition for {0, 1}n to general message
spaces. However, we will see that the resulting notion is slightly incorrect. In fact, it suffers
from both a syntactic criticism and a semantic problem.

Syntactic Criticism. A first issue with this definition of security is that it requires that,
for each pair of messages (m0,m1), their encryptions are indistinguishable from each other:

(∀m0,m1 ∈Mk) , ∀ PPT algorithm A

∣

∣

∣
Pr[A(c, PK) = b | (SK,PK,Mk)←r G(1k) , b←r {0, 1}, c←r EPK(mb)]−

1

2

∣

∣

∣
≤ negl(k)

In other words, we are quantifying on the message space Mk, even before the random
choice of (SK,PK,Mk)! In the cases in which the message space Mk is fixed, or just varies
as a function of the security parameter k (e.g. when Mk = {0, 1} or Mk = {0, 1}p(k)),
this can be fixed simply “moving Mk out” of the output of the key-generation algorithm
G(1k). And this is exactly what we did. But in other interesting cases, like the RSA and
the ElGamal PKEs we study later, the message space Mk is indeed somehow related to the
public key being used, so that it doesn’t yet make sense to choose a pair of messages before
knowing the actual public key PK being selected.

This is clearly just a syntactic problem, so that it doesn’t affect too much the overall
correctness of our current approach. Still it needs to be fixed.

Semantic Criticism. A semantic problem with the notion of indistinguishable security is
that it just states that any PPT adversary must have a negligible advantage in distinguishing
the encryptions of any pair of messages (m0,m1), when the public key is randomly selected.
Therefore, it does not cast away the chance that, given knowledge of the public key, an
adversary may be able to come up with a pair of messages such that it can indeed distinguish
the associated ciphertexts.

To overcome this problem, we could be tempted to modify the definition in such a way
that first we fix the public key PK and the private key SK, and then we quantify overall
the possible pair of messages. But in this case we are asking too much, since the existence
of “bad” pairs of messages is unavoidable. To see why, consider an adversary that, in
distinguishing between the encryptions of (m0,m1), always assumes that the second message
is the private key SK, and tries to decrypt the encryption it has being given accordingly.
Clearly, the advantage of this adversary is negligible whenever the second message is not
the secret key; however, in the very specific, pathological case in which the pair is of the
form (m0, SK), its advantage will be 1.

After all, what we really want from our definition of security is that, even if the adversary
already knows PK, it should be infeasible for him to find two messages for which it has a
non-negligible advantage.
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Security Against Chosen Plaintext Attack. Both the criticisms stated above stem
from the the fact that the messages m0,m1 are quantified “outside” the probability which
constitutes the advantage of the adversary:

• from a syntactic point of view, this is bad since the message space Mk is chosen
“inside” the probability;

• from a semantic point of view, this is bad since we want to allow the adversary to
choose the pair of messages after seeing the PK, and thus the probability should be
taken over all the pairs of messages that it can efficiently find.

We can fix both this problems with the following definition of:

Definition 7 [Indistinguishable Security Against Chosen Plaintext Attack]
A PKE E = (G,E,D) is indistinguishable against a chosen plaintext attack (CPA), or,
shortly, IND-CPA-secure, if ∀ PPT algorithm A

∣

∣

∣
Pr

[

b = b̃
∣

∣

∣

(PK,SK,Mk)←r G(1k), (m0,m1, α)← A(PK,Mk, ‘find’)

b←r {0, 1}, c← EPK(mb), b̃← A(c, α, ‘guess’)

]

−
1

2

∣

∣

∣
= negl(k)

♦

Let’s take a closer look at what is going on! This notion of security can be viewed as
the following game between us and the adversary:

1. we run the key-generation algorithm, obtaining (PK,SK,Mk);

2. we give the public key PK and the message space Mk to the adversary and ask it
to ‘find’ a pair of messages in Mk for which it believes it can distinguish encryptions
under the key PK;

3. the adversary outputs a pair of messages (m0,m1) of its choice, along with its final
“state”, i.e. some kind of summary of the considerations and computations that led
it to choose this specific pair of messages;

4. we choose which one of two message we want encrypt, and give it the corresponding
ciphertext c;

5. we ask the adversary to tell which message we encrypted, allowing it to “remember”
the reasons for which it chosen the pair (m0,m1).

We win the game (i.e. the considered PKE is IND secure against CPA) if the adversary’s
advantage (defined as usual as its probability of success) is negligible.

As we will see, the resulting notion is really the “right” notion of security for PKE.
Moreover, it turns out it is better suited even for the case when the message space is
{0, 1}n. Namely, we show that this new notion of security is strictly more general than
the PK-only security, even when restricted to {0, 1}n for which PK-only security also makes
sense.

Theorem 3 (CPA ⇒ PK-only)
If a PKE E = (G,E,D) is CPA secure, then E is also PK-only secure.
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Proof: Let us assume that E in not PK-only secure, i.e.
∃m0,m1, ∃ a PPT algorithm A such that

Pr(A(c, PK) = 1 | (SK,PK)←r G(1k), c←r EPK(c)) = ǫ

where ǫ is not-negligible.
Now, we can construct an adversary A′ that, using A as a black-box module, breaks

the CPA security of E . Recall that, in the CPA notion of security, the adversary acts in two
rounds:

find Regardless of the public key PK at hand, A′ always chooses the pair of message
(m0,m1) of the hypothesis, and records in α the public key PK, m0 and m1:

A′(PK,Mk, ‘find’)→ (m0,m1, α)

guess When challenged to determine which message was encrypted, A′ runs A(c, PK):

A′(c, α, ‘guess’)→ A(c, PK)

Clearly, this algorithm A′ has the same (non-negligible) advantage as A, contradicting the
hypothesis that E was CPA secure.

Theorem 4 (PK-only 6⇒ CPA)
There exists a PKE E = (G,E,D) which is PK-only secure, but is not CPA secure.

Proof: To prove the theorem it suffices to come up with a counterexample, namely a
specific PKE E ′ which is PK-only secure but not CPA secure. To this purpose, consider an
arbitrary PKE E = (G,E,D) which is PK-only secure and modify it as follow:

Key-Generation Algorithm

set: (PK,SK) = G(1k), r random

output: (PK ′, SK ′) = ((PK, r), SK)

Encryption

E′(m) =

{

(0, E(PK ′)), if m = PK ′

(1, E(m)), otherwise

Decryption

{

D′(0, y) = PK ′

D′(1, y) = D(y)
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Clearly, E ′ is not CPA secure, since once the adversary knows the public key PK ′, it can
ask to be challenged on the pair of messages (PK ′,m1), and it will always succeed in
distinguishing an encryption of PK ′ (which starts with 0) from an encryption of any other
message (which starts with 1).

Nevertheless, E ′ is still a PK-only secure PKE, since, in this setting, it is no longer possi-
ble to efficiently find a pair of messages (m0,m1) whose encryptions are easy-to-distinguish.
Indeed, due to the random r present in the public key PK ′, the probability that the ad-
versary could guess the public key PK ′ that will be used, is always negligible (no matter
how short the public key PK for the PKE E could be). Besides, it will be difficult for the
adversary to find a generic pair (m0,m1) which makes its task easy, since such a pair could
be also used to tell apart encryptions for the PKE E , contradicting the hypothesis that E is
PK-only secure.

Remark 3 Despite the slight differences, and the non-equivalence proved in the above the-
orem, the two notions of security formalized are quite close. In particular, all the results
stated so far (the generalization of a one-bit secure PKE to a secure PKE for any number
of bits, the Blum-Goldwasser system, the analysis of security of the ElGamal cryptosystem)
hold as well when we consider the indistinguishable security against CPA.

This is because the separation between CPA and PK-only security is somewhat artificial,
and not of real concern, but anyway, once you know, why not to use the right one?

8 Semantic Security

We defined the notion of indistinguishability for PKE. For convenience, we repeat it here in
a slightly modified (but equivalent form), where we “split” the attacker B into B1 (corre-
sponding to B in the ‘find’ stage) and B2 (corresponding to B in the ‘guess’ stage)”

Definition 8 [Indistinguishability] A cryptosystem (G,E,D) is called IND-secure (against
CPA attack) if for any PPT adversary B = (B1, B2), we have

Pr[ b = b̃ | (PK,SK)← G(1k);
(m0,m1, β)← B1(PK);
b← {0, 1};
c̃← E(mb; PK);

b̃← B2(c̃, β, PK) ] ≤ 1
2 + negl(k)

♦

The notion of indistingusihability is pretty simple, but it is not clear if it is enough for
all applications of encryption. Why are there two messages only, and why is the message
chosen to be one of them with probability precisely 1/2? And does it imply “security”
when message is chosen from a higher entropy distribution? Motivated by these questions,
we now define a seemingly much more powerful definition of semantic security. It is more
difficult to grasp, but it literally says that the knowledge of the ciphertext cannot help the
adversary.

Definition 9 [Semantic security] A cryptosystem (G,E,D) is semantically secure (against
CPA attack) if for any PPT environment Env and any PPT adversary A there exists a PPT

simulator S such that |pa(k)− ps(k)| = negl(k), where
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pa(k) = Pr[ R(m, z) = 1 | (PK,SK)← G(1k);
(m,R,α)← Env(PK)
c← E(m; PK);
z ← A(c, α, PK) ];

ps(k) = Pr[ R(m, z) = 1 | (PK,SK)← G(1k);
(m,R,α)← Env(PK)
z ← S(α, PK) ].

♦

Let us trace the meaning behind this definition. First, we explain the constructs used
in the definition.

Env stands for the environment/context in which the sender, the receiver, and the ad-
versary operate. In the environment, an event may occur that will cause the sender to
need to send a certain message to the receiver. E.g. changes in the enemy’s strategies may
create the need of two army divisions to communicate. When such an event occurs, the
environment will generate the message m the sender will have to send and some partial
information α the adversary will infer from knowing the event. Notice, such environment
could be arbitrary (albeit PPT), so we quantify over all such environments.

The adversary A, as usual, attempts to gather some (more) information about the
message from the ciphertext and the partial information α. This information is referred to
as z ∈ Z. The adversary is considered successful if his algorithm A outputs information
z that is relevant, i.e. it has to do with the message m. In other words, the message m
and the adversary’s output z must be related. Formally this means that there is a binary
relation R ⊂Mk×Z such A tries to satisfy R(m, z). The environment produces this relation
R in addition to the message and information α (since Env is arbitrary, this gives a lot of
freedom in generating R that the adversary happens to be “interested in”).

In the real world (as opposed to the simulated experiment described below), the sender
encrypts c ← EPK(m), and the adversary intercepts c. The adversary has access to c,
PK, and the public information α he learns from the environment. The adversary runs his
algorithm that outputs z, the information that the adversary hopes would reveal something
from the relevant to the message m. The probability of the adversary’s success is pa =
Pr[R(m, z) = 1], i.e. the probability that the output information z is in relation R with the
message m.

Now let us discuss the simulated experiment. A simulator S is an algorithm very similar
to the one the adversary uses (A): S’s objective and output is the information z as related
to the original message as possible. The only difference is that S does not receive c as
its input. The simulator operates purely on the public knowledge α. Given a paraticular
simulator S, its probability of success is ps(k) = Pr(R(m, z) = 1).

Now, what we want to say is that no PPT adversary A can benefit too much from
intercepting the ciphertext c. Namely, for any such adversary A where exists a simulator
S, whcih achieves essentially the same probability of success, without any knowledge of c!
In other words, the knowledge of c is useless for all practical purposes: whatever could be
inferred from it, could be inferred without it as well. Formally, |pa(k) − ps(k)| = negl(k).
This is exactly what the definition of semantic security states.
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Quite remarkably, we will show that semantic security is equivalent to indistinguisha-
bility! We notice that by proving this equivalence we will gain the powerful implications of
semantic security while being able to work with the simpler IND-security definition. And
this is exactly what we show:

Theorem 5 A cryptosystem (G,E,D) is semantically secure if and only if it is IND-secure.

8.1 IND-security implies semantic security

Suppose a cryptosystem (G,E,D) is not semantically secure. We wish to show that it is
not IND-secure either.

By assumption, there exists a PPT environment Env and adversary A such that for all
PPT simulators S, |pa(k)−ps(k)| ≥ ǫ where ǫ is non-negligible (i.e., it is inverse-polynomial
for infinitely many k). So, in particular, let S be as follows:

• S: On input (α, PK),

– Let c′ ← E(0; PK).
Here by 0 we denote an arbitrary fixed message in the domain of our encryption
(we assume wlog that such fixed message can be easily obtained from PK).

– Output z′ ← A(c′, α, PK).

By assumption, for this S we have |pa(k)− ps(k)| ≥ ǫ. To understand the above better, we
see that we really perform the following experiment:

(PK,SK) ← G(1k)

(m,R,α) ← Env(PK)

c← E(m; PK) and c′ ← E(0; PK)

z ← A(c, α, PK) and z′ ← A(c′, α, PK)

Then pa(k) = Pr(R(m, z) = 1), while ps(k) = Pr(R(m, z′) = 1), and our assumption says

|Pr(R(m, z) = 1)− Pr(R(m, z′) = 1)| ≥ ǫ (2)

We notice that the above almost literally defines a distinguisher between encryption of m
and of 0. To formalize this, we now construct the following PPT adversary B = (B1, B2)
that will break the IND-security of our encryption by making sub-routine calls to Env and
A:

• B1: On input PK,

– Obtain (m,R,α)← Env(PK).

– Output (m, 0, β), where state information β = (m,R,α).

• B2: On input (c̃, β, PK), where β = (m,R,α),

– Obtain z̃ ← A(c̃, α, PK).
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– If R(m, z̃) = 1, output b̃ = 0 (i.e. message is m), else b̃ = 1 (i.e. message is 0).

The fact the B = (B1, B2) break the indistinguishability of (G,E,D) is almost obvious.
Indeed, if b = 0 (i.e., message is m), then c̃ = c ← E(m; PK), z̃ = z ← A(c, α, PK),
and Pr(b̃ = b) = Pr(R(m, z) = 1) = pa(k). Similarly, if b = 1 (i.e., message is 0), then
c̃ = c′ ← E(0; PK), z̃ = z′ ← A(c′, α, PK), and Pr(b̃ = b) = Pr(R(m, z) = 0) = 1− ps(k).
Overall

Pr(b̃ = b) =
1

2
· (pa(k) + 1− ps(k)) =

1

2
+

1

2
· (pa(k)− ps(k))

which is non-negligibly different from 1/2 by Equation (2). This completes the proof that
IND-security implies semantic security.

8.2 Semantic security implies IND-security

Suppose that our cryptosystem (G,E,D) is not IND-secure, i.e. there exists an adversary
B = (B1, B2) such that for some non-negligible ǫ = ǫ(k),

Pr[ b = b̃ | (PK,SK)← G(1k);
(m0,m1, β)← B1(PK);
b← {0, 1};
c̃← E(mb; PK);

b̃← B2(c̃, β) ] > 1
2 + ǫ(k)

We notice that wlog we can assume that B1 never outputs m0 = m1. Let us construct
an environemnt Env and an adversary A that break the semantic security of (G,E,D) as
follows:

• Env: On input PK,

– Obtain (m0,m1, β)← B1(PK).

– Let R be the equality relation (R(x, y) = 1 ⇐⇒ x = y), and let adversary’s
partial information be α = (m0,m1, β).

– Output (mb, R, α), where b← {0, 1} is a random bit (not given to the adversary!)

• A: On input (c, α, PK), where α = (m0,m1, β),

– Obtain b̃← B2(c, β).

– Output z = m
b̃
.

It is clear that the value pa(k) for this adversary is exactly the probability of success of
B = (B1, B2), since the experiments and the success condition (mb = m

b̃
⇐⇒ b = b̃ as we

assumed m0 6= m1) are exactly the same. Namely, our environment picked the random bit
b for the adversary, but did not reveal it in the partial information α. Thus, pa(k) >

1
2 + ǫ.

On the other hand, what is the best chances for any algorithm S that does not take
c as input? Well, S has to predict a random bit b about which it gets no information
at all (remember that Env picked b after α — the input to S — was already computed)!
Hence, ps(k) = 1

2 , which combined with pa(k) >
1
2 + ǫ contradicts the semantic security of

(G,E,D).
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8.3 Other definitions

Twenty years ago, there were no established definitions of security. But people had intuition
that “seemed right.” The intuition behind the RSA cryptosystem is that, without any a-
priori information on the message, it is hard to infer it completely from seeing its encrypted
form. As we have stressed before, this intuition of “one-wayness” is much weaker than the
intuition behind IND-security.

Yao had another intuition, which had to do with effectiveness of data compression. His
intuition is that, if a cryptosystem is secure, then it takes just as many bits to transmit a
message, whether I happen to have this message in encrypted form already or not. Namely,
the encryption does not help me to further compress the message. From the point of view
of an information-theorist, this intuition is very natural, and quite akin to Shannon’s ideas
about security. It turns out that Yao’s definition is equivalent to semantic security (and thus
indistinguishability)! This was shown by Micali, Rackoff, and Sloan. Hence, we start to see
very convincing evidences that there is something fundamental in our notion of security,
since so many differently looking definitions turned out to be equivalent!

Notice, it is possible that other notions of security may prove useful, even if they are
not comparable to existing ones. In particular, semantic security is not the only remaining
candidate (even though it is the most accepted one). The study of useful notions of security
is on-going, and if you have any interesting ideas related to it, please be sure to follow up
on them!

Worry about definitions so much? We focus on provable security, i.e., if we claim
that a cryptosystem is secure, then we also exhibit a proof of this claim, under some
reasonable computational assumption (where “reasonable” is in the eye of the beholder, of
course). Historically, there were so many incorrect cryptosystems and definitions of security
suggested, that the need for formalism is clear: why to settle for empirical evidence when
you can do better? Of course, whether a given formal definition satisfies one’s need for
security, or comes short of it, is, needless to say, in the eye of the beholder as well. To
summarize, a discussion of possible definitions and their strength is central, while the need
for such definitions is obvious.
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Last time we proved that if there exists a secure PKE E to encrypt one bit, then there
also exists a secure PKE E ′ to encrypt as many bits as we want. In this lecture, we will go
further in this direction, searching for the minimal assumption that implies the existence
of a indistinguishable (IND) PKE.

Afterwards, we will temporarily leave the construction of our theoretical framework, and
we will move to analyzing efficient and practical encryption schemes, based on less general
assumptions. In particular, we will present the ElGamal PKE, whose various levels of
security can be stated in term of two different (but related) assumptions: the Computational
Diffie-Hellman (CDH) Assumption, and the Decisional Diffie-Hellman (DDH) Assumption.
We will also study the related problem of Diffie-Hellman key exchange.

Finally, we come back to Secret-Key Encryption (SKE) and study notions of security
for SKE. First, we define IND-security for one message and give examples of encryptions
that provide such security. Unfortunately, one-message security no longer implies multiple
message security for SKE. Thus, we define the notion of IND-security for multiple messages.
Then, we extend out notion of IND-security to protect against Chosen Plaintext Attack
(CPA). We notice that CPA-security is at least as strong and more natural than multiple
message security.

1 Minimal Assumption For Indistinguishable Encryption

Up to now, we have introduced a few mathematical entities in our theoretical framework,
and a significant part of our work has been in realize their connections. For the sake of
clarity, in fig. 1 we sketch the cryptographic primitives we have encountered so far, and
how they are related to each other: an arrow from a primitive to another, means that the
existence of the first implies the existence of the second.
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Figure 1: Relations between Cryptographic Primitives

It is worth noticing that the arrow from One-Way-Encryption to IND-Encryption does
not mean that each PKE which is One-Way secure is also PKE secure (which is not the
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case!). Instead, it means that the existence of a One-Way secure PKE implies the existence
of an IND PKE as proved in the following theorem.

Theorem 1
If there exists a One-Way secure PKE E = (G,E,D) then there exists an IND PKE E ′ =
(G,E′, D′).

Proof: The proof is an application of the One-Time Pad Lemma. By the hypothesis, we
have that E is a One-Way secure PKE, i.e. the encryption function E is a OWF. Using the
Goldreich-Levin theorem, we know that a random parity of the input bits of x is a hardcore
predicate of E:

(E(x), r, (x · r mod 2)) ≈ (E(x), r, b), where x, r ←r Mk, b←r {0, 1} (†)

Let us define a one-bit PKE E ′ = (G,E′, D′), where to encrypt one bit b′ using the
randomness (x, r), E′ runs E as follows:

E′(b′;x, r) = (E(x), r, ((x · r) mod 2)⊕ b′)

The key-generation algorithm for E ′ is exactly the same as for E , while the decryption
algorithm D′ is the straightforward inverse of E′:

D′(y, r, c) = (((D(y) · r) mod 2)⊕ c).

To prove that E ′ is an IND PKE, we apply the One-Time Pad Lemma, choosing the
distributions X = (E(x), r) and Y = (x · r) mod 2. Therefore, the (†) can be rewritten as
(X,Y ) ≈ (X, b). Thus, by the One-Time Pad Lemma, it holds that (X,Y ⊕0) ≈ (X,Y ⊕1),
that is:

E′(0;x, r) = (E(x), r, ((x · r) mod 2)⊕ 0) ≈ (E(x), r, ((x · r) mod 2)⊕ 1) = E′(1;x, r).

2 Efficient Encryption

So far, we have dealt with general constructions and properties of PKEs. However, those
constructions, although polynomial, are still inefficient and generally not used in practice.
Instead, people typically use optimized schemes based on specific number-theoretic assump-
tions (as opposed to general assumption like the existence of TDPs). In this section we study
one of the sysmplest such PKEs, called the ElGamal cryptosystem, based on the hardness
of the Diffie-Hellman Problem, which, in turn, is the basis of a famouse Diffie-Hellman Key
Exchange.

2.1 The Diffie-Hellman Key Exchange

In their seminal paper on Public-Key Cryptography, W. Diffie and M. Hellman proposed
the first Key-Exchange Scheme, i.e. a scheme to enable two parties, Alice and Bob, to
exchange a jointly-selected shared key s to be used in a subsequent, secure communication
(for example, as the shared key in a One-Time Pad cryptosystem). The scheme can be
sketched as follows:
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• Alice and Bob choose a public prime number p, and a generator g of the cyclic group
Z
∗

p (where |p| = k);

• Alice chooses (and keeps secret) an exponent a ∈ Zp−1, then computes α = ga mod p,
and finally sends α to Bob;

• Bob chooses (and keeps secret) an exponent b ∈ Zp−1, then computes β = gb mod p,
and finally sends β to Alice;

• as soon as Bob receives the message α from Alice, he computes sB = αb mod p;

• as soon as Alice receives the message β from Bob, she computes sA = βa mod p.

Clearly, at the end of this protocol, Alice and Bob share the secret key s = gab mod p:

sA ≡ β
a ≡ (gb)a ≡ (ga)b ≡ αb ≡ sB (mod p)

Notice that, while Alice or Bob can easily compute s (since they knows a and b re-
spectively), an eavesdropper Eve has to face the much more difficult problem of computing
gab given knowledge (p, g, ga mod p, gb mod p): we will refer to this problem as the Diffie-
Hellman Problem (DHP).

INPUT: p, g generator of Z
∗

p, (ga mod p) and (gb mod p)

OUTPUT: gab mod p

But how can Eve succeed in her task? Of course, if Eve were able to compute the discrete
logarithms in Z

∗

p, then she could compute gab mod p, by first extracting a from ga mod p,

and then raising gb mod p to the ath power. It follows that Diffie-Hellman problem is at
most as difficult as the more general Discrete Logarithm problem. Of course, this does not
imply the equivalence of the two problems: it could certainly be the case that computing
discrete logarithms is hard, while solving the Diffie-Hellman problem is possible. This leads
to the following assumption:

Definition 1 [Computational Diffie-Hellman (CDH) Assumption over Z
∗

p]
∀ PPT algorithm A

Pr[A(p, g, ga, gb) = gab | p-prime, |p| = k, a, b← Zp−1, g generator of Z
∗

p] = negl(k)

♦

In other words, the CDH assumption states that “it is hard to completely compute
gab mod p”. But this is not enough for key exchange, for the same reason that one-wayness
is not enough to guarantee a secure encryption. Indeed, for all we know, the attacker may
obtain a lot of partial information about the key gab, which would mean, for example, that
it is not safe to use s = gab as a one-time pad. What we need is that the agreed key should
look indistinguishable from random to Eve. This leads to the following general definition.

Definition 2 [Passive Security of Key Exchange, semi-formal] We say that a key exchange
protocol is secure against a passive1 observer if for any PPT attacker A we have 〈T, s〉 ≈

1The reason for the term “passive” will become clear very soon.
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〈T,R〉, where T is the public transcript of the protocol, s is the key agreed upon by Alice
and Bob, and R is a completely independent random key of the same length as s. ♦

For example, for the DH key exchange the transcript, which is the information that Eve
has, consists of T = 〈p, g, ga, gb〉. Thus, in order for the DH key exchange to be passively
secure it is necessary and sufficient to make the following stronger assumption, which is
called Decisional Diffie-Hellman (DDH) assumption:

Definition 3 [Decisional Diffie-Hellman (DDH) Assumption in Z
∗

p]
∀ PPT algorithm A

∣

∣

∣
Pr[A(p, g, ga, gb, gab) = 1 | p-prime, |p| = k, a, b← Zp−1, g generator of Z

∗

p] −

Pr[A(p, g, ga, gb, gc) = 1 | p-prime, |p| = k, a, b, c← Zp−1, g generator of Z
∗

p

∣

∣

∣
=

= negl(k)

Equivalently, it is infeasible to distinguish between gab and gc given (p, g, ga, gb) (we omit p
below):

(g, ga, gb, gab) ≈ (g, ga, gb, gc), where a, b, c←r Zp−1

♦

Lemma 1 Under the DDH assumption in Z
∗

p, the DH key exchange is passively secure.

Unfortunately, as stated, the DDH assumption is false!

Lemma 2 DDH assumption is false in Z
∗

p.

Proof: The problem is that Eve can learn the quadratic character of gab mod p. Recall, the

quadratic character χ(x) for an element x ∈ Z
∗

p is defined as: χ(x) =

{

0 if x ∈ QRp

1 if a 6∈ QRp

,

where QRp is the subgroup of quadratic residues modulo p. Equivalently, it is equal to
the least significant bit (LSB) of the discrete logarithm of x base g. Either way, it can be
efficiently computed by testing wther or not g(p−1)/2 mod p ≡ 1. Thus, from ga Eve can
compute LSB(a), from gb — LSB(b), and then since (p− 1) is even

LSB(ab mod (p− 1)) = (ab mod (p− 1)) mod 2 = ab mod 2 = LSB(a)⊕ LSB(b)

Put differently, gab is a quadratic character iff either both ga abd gb are, or none are.
But this means that given the public transcript, Eve can compute the quadratic character
χ(s) of the agreed key s, which means that s is distinguishable from ranndom (since a
random x has a random quadratic character which cannot be predicted). In other words,
the scheme leaks some information about the key.

It is common practice to fix this problem via an ad hoc solution, that consists in imposing
a specific structure on the prime p. Let us assume that p = 2q+1, with p and q both primes
(such a prime p is called strong prime). Then consider the subgroup G of Z

∗

p made up by
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all the quadratic residues modulo p: in other words G
.
= QRp . It is known that the order

of this subgroup is p−1
2 = q, i.e. QRp has prime order for our choice of p. Moreover, if h is

a generator of Z
∗

p, then g = h2 mod p is a generator of G. Finally, (G, ·) is isomorphic to

(Zq,+), since ga · gb ≡ g(a+b) mod q (mod p). Indeed, by definition of generator and of order
of a group, it holds that gq ≡ 1 (mod p). Now, writing a + b = c · q + (a + b) mod q for
some c, we can make the following considerations:

ga · gb ≡ g(a+b) ≡ gc·q · g(a+b) mod q ≡
(

gq
)c
· g(a+b) mod q ≡ 1c · g(a+b) mod q (mod p)

Finally:
ga · gb ≡ g(a+b) mod q (mod p) .

We can now modify the Diffie-Hellman Key-Exchange protocol, so that the random
values a and b chosen by Alice and Bob are drawn from Zq (instead of Zp−1), and the whole
computation is performed in G (instead of Z

∗

p).
The reason why these changes are effective is that now it is always the case that ga mod p,

gb mod p and gab mod p are quadratic residues, and so what Eve can learn trough the
considerations above (namely, the quadratic character of gab mod p) is already publicly
know.

Of course, this “fix” does not a-priori guarantee that no other leakage of partial informa-
tion is present by some other means. Nevertheless, extensive attempts to find other attacks
on this modied scheme have failed, and, therefore, people came up with the following vari-
ants of the CDH and DDH assumptions in this new, slightly modified setting. Both variants
are believed to be secure for a large enough security paprameter.

Definition 4 [Computational Diffie-Hellman (CDH) Assumption in QRp]
∀ PPT algorithm A

Pr[A(ga, gb) = gab | p = 2q + 1, |p| = k, p, q primes, a, b←r Zq, g generator of G] = negl(k)

(where it is omitted that A also knows the public modulo p and the generator g.) ♦

Definition 5 [Decisional Diffie-Hellman (DDH) Assumption in QRp]
∀ PPT algorithm A

∣

∣

∣
Pr[A(ga, gb, gab) = 1 | p = 2q + 1, |p| = k, p, q primes, a, b←r Zq, g generator of G] −

Pr[A(ga, gb, gc) = 1 | p = 2q + 1, |p| = k, p, q primes, a, b, c←r Zq, g generator of G]
∣

∣

∣
=

= negl(k)

(where, again, it is omitted that A also knows the public modulo p and the generator g.) ♦

Similarly to Lemma 1, we get

Lemma 3 Under the DDH assumption in G = QRp, the modified DH key exchange is
passively secure.
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We still have two more problems:

Key is not a “bit-string”. As it is defined, the DH key exchange outputs a key s =
gab mod p which looks like a random element of the group G = QRp. As such, it appears
that it cannot be directly used for a one-time pad or other general purposes. In other words,
ideally we want to output a usual bit-string as our key. There are several ways out of this.
One very general way is to usilize some “magic function” H from G to bit-strings of some
length ℓ (roughly, ℓ ≈ k) with the property that a random element of G gets mapped to
an almost random element of {0, 1}ℓ. Turns out such general functions exist and called
randomness extractors.

Here we describe a simple construction of such H for our specific choice of G = QRp.
Actually, let us first map from G to Zq Since p = 2q + 1 and q is prime, q is odd. Hence,
q = 2k + 1, and substituting we obtain p = 4k + 3, or alternatively p ≡ 3 (mod 4). Then
we know that any s ∈ Z

∗

p = {1 . . . 2q}, precisely only one among s and −s is a quadratic
residue. Similarly, precisely one of s and −s is between 1 and q. Thus, we have a bijection
between QRp and Zq: map any s ∈ QRp either to s, if s ≤ q, or to p− s is s > q.

Still, we only get a radnom number t from 1 to q, and q is not a precise power of 2.
However, to get a bit-string which is very close to uniform we can simply truncate a few
bits of t. Concretely, if ℓ is an integer s.t. 2ℓ < q, then the “variation distance” between a
random ℓ-bit string and our “extracted” string is less than 2ℓ/q, so by dropping roughly 80
bits we get a nearly perfect random string.

Active Attacker. The second problem is that there is no way for Bob to know who is
the sender of a message. In particular, the protocol we have allows Eve to mount the so
called person-in-the-middle attack:

• Alice chooses (and keeps secret) an exponent a ∈ Zq, then computes ga mod p, and
sends it to Bob;

• Eve intercepts ga mod p (thus preventing Bob from getting it), and sends ga′

mod p
to Bob, for a random a′ of her choice;

• Bob chooses (and keeps secret) an exponent b ∈ Zq, then computes gb mod p, and
sends it to Alice;

• Eve intercepts gb mod p (thus preventing Alice from getting it), and sends gb′ mod p
to Alice, for a random b′ of her choice;

• when Bob receives the message ga′

mod p, he (erroneously) assumes that it comes
from Alice, and thus he sets sB = (ga′

)b mod p = ga′b mod p;

• when Alice receives the message gb′ mod p, she (erroneously) assumes that it comes
from Bob, and thus she sets sA = (gb′)a mod p = gab′ mod p;

• Eve can easily compute both sA = (ga)b′ mod p = gab′ mod p and sB = (gb)a′

mod p =
ga′b mod p.

As a consequence of the attack, at the end of this run of the protocol, Alice and Bob
happily enjoy their “secure” connection, exchanging their love messages and saying nasty
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things about Eve, but . . . sA 6= sB, and so actually they are talking trough Eve, who can
not only learn everything, but also manipulate the communication. Notice also that the
attack is generic: any protocol where Alice and Bob have no way to “authenticate” each
other allows Eve to have 2 disjoint conversations with them just like below. Thus, to avoid
this attack, a key point is to add Authentication to the basic Key-Exchange Scheme, i.e.
provide some mechanisms that enables the receipient of a message to be sure about the
identity of the sender. This is typically achieved by means of Digital Signature, which will
be discussed later. When we do it, we will be able to get key exchange protocols resisting
an active rather than passive attacker. But, for now, we need to assume that Eve is passive
and merely listens to the conversation when trying to deduce information about the key s.

2.2 Back to Encryption: The ElGamal Cryptosystem

Now, we describe the ElGamal Cryptosystem, which exploits the hardness of the DHP to
achieve a reasonable level of security quite efficiently.

1. On input 1k, the key-generation algorithm Gen chooses a strong prime p = 2q + 1
along with a generator h of Z

∗

p, and sets g = h2 mod p. Afterwards, G takes a random
element x ∈ Zq and sets y = gx mod p. Finally, G outputs (PK,SK,Mk), where
PK = (p, g, y), SK = x, and the message space is Mk = G = QRp.

2. Given a message m ∈ Mk and some randomness r, the encryption algorithm EPK

outputs the ciphertext (s, t) = (gr, yr ·m), where PK = (p, g, y).2 Notice that, since
y = gx, the ciphertext is actually of the form (gr, gxr ·m), although, of course, this
form is “hidden’, and Eve can only see (s, t).

3. In order to decrypt a ciphertext (s, t), given the private key SK = x, the decryption
algorithm D first recovers the quantity sx = grx = yr, and then ‘simplifies’ it out from
t, computing t · (sx)−1 = t · (yr)−1 = yr ·m · (yr)−1 = m.

4. In attacking the cryptosystem, the adversary Eve knows the public key PK = (p, g, y =
gx) and a ciphertext (s, t) = (gr, yr ·m), corresponding to m: overall, Eve’s knowledge
can be represented as (gr, gx, gxr ·m).

Comments.

• Both the encryption and the decryption algorithms of this scheme are fairly efficient,
since, in each invocation, at most two modular exponentiations are required.

• Each ciphertext produced by the encryption algorithm is exactly twice as long as the
plaintext. This space overhead is induced by the presence of some randomness in the
encryption algorithm — which is unavoidable in any PKE that ‘aims’ to fulfil a notion
of security that is stronger than One-Way security: as we noticed in previous lectures,
a share of non-determinism is necessary to be able to send more than once the same
message, in such a way that Eve cannot recognize that two different ciphertexts are
related to each other.

2Where omitted, the computation is assumed modulo p.
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• As it is defined, the ElGamal Scheme allows us to encrypt only messages that are
elements of the group G. Usually, the messages we want to encrypt are not numbers,
although they can easily be mapped onto numbers in some specific range (say, from
1 to q): but how can we force such numbers to be quadratic residues? We simply do
the inverse mapping to the one described in the previous section, when we mapped a
quadratic residue in G = QRp to an element of Zq. Namely, for our choice of p we
showed that for any m ∈ Zq, precisely one of m and −m belongs to G, so we simply
apply the ElGamal encryption to either m or −m, whichever is the quadratic residue.

Of course, we can turn this around, and directly encrypt m ∈ Z, by changing the
encryption to (gr, H(yr)+m mod q), whereH is the mapping described in the previous
section: H(z) = z if z < q and H(z) = −z if z ≥ q. We will see, however, that this way
we lose the homomorphic properties of ElGamal encryption that we describe next.

Homomorphic Properties. ElGamal Encryption has several very nice properties which
we describe here informally.

• ElGamal encryption is homomorphic. Given the public key and two encryptions
(s0, t0) and (s1, t1) of some unknown messages m0 and m1, one can efficiently compute
an encryption (s0s1 mod p, t0t1 mod p) of m0m1 mod p. Indeed, if r0 and r1 are the
coins used in the above encryptions, we have

(s0s1 mod p, t0t1 mod p) = (gr0+r1 , yr0+r1 · (m0m1)) = E(m0m1; r1 + r2)

More generally, for any integers i and j one can compute encryption of mi
0m

j
1 mod p

in a similar manner, by rasing computing (si
0s

j
1, t

i
0t

j
1).

• ElGamal encryption is blindable. Given the public key, some encryption (s, t) of some
unknown message m, and any value m′ ∈ G, one can efficiently compute an encryption
of mm′ mod p. Indeed, this follows from the momomorphic property above, or can
be seen directly by computing (s, t ·m′). Moreover, a random encryption of m ·m′

can be obtained by picking a random r′ ∈ Zq and computing (s · gr′ , t · yr′ ·m′). The
verification of this fact is similar to the above.

• ElGamal encryption is re-randomizable. Given the public key and an encryption (s, t)
of some unknown message m, one can compute a fresh random encryption of the
same m which is identical to the process of really encrypting known m from scratch.
Simply apply the previous scheme to m′ = 1, or, directly, pick random r′ and compute
(s · gr′ , t · yr′).

These homomorphic properties, by themself, are neither good nor bad: it depends upon
the scenario at hand. Consider, for example, the case of a centralized authority C that is
able to decrypt messages for others, but should not be allowed to learn the content of those
messages. At first glance, this may seem hopeless, but the “blindable” property comes in
help: instead of submitting the actual ciphertext, one can choose a random message m′

and send to C a “blinded” ciphertext for m · m′ (without knowng m, of course!). When
C decrypts, it cannot understand the content (since the randomness of m′ makes mm′
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random!), but the other party can recover m by simply dividing out by m′ (which it chose
and knows).

On the other hand, in the setting of an auction, the “blindable” property would allow a
participant to “cheat” by doubling the price offered by another participant, even when the
auction bets are being encrypted with the ElGamal PKE of the auctioneer.

Relation to Key Encapsulation and Key Exchange. First, we notice that the
ElGamal encryption also follows the general key encapsulation paradigm we studied earlier,
except the XOR operation is replaced by multiplication in G. In particular, we get the
following key encapsulation mechanism (Gen, E,D).

• Gen is exactly the same as for the ElGamal cryptosystem. It chooses a strong prime
p = 2q+1 along with a generator h of Z

∗

p, and sets g = h2 mod p. Afterwards, G takes
a random element x ∈ Zq and sets y = gx mod p. Finally, G outputs (PK,SK,Mk),
where PK = (p, g, y), SK = x, and the message space is Mk = G = QRp.

• The key encapsulation algortihm KE(PK). It chooses a random r and sets key
s = yr mod p and ciphertext ψ = gr mod p.

• The key decapsulation algortihm KD(ψ;SK) outputs s = ψx mod p.

The correctness is tested exactly as in the the DH key exchange: ψx = grx = yr. And
this is more than a coincidence. Indeed,

Observation 2 Any two-round key exchange secure against a passive attacker yeilds a key
encapsulation mechanism which is CPA-secure, and vice versa.

Proof: First, we do the easier direction. Given any KEM, construct two-round key exchange
as follows.

• In the first round, Alice choses (PK,SK)← Gen(1k) and sends PK to Bob.

• In the second round, Bob computes (s, ψ) ← KE(PK), and sends ciphertext ψ to
Alice. Bobn’s key is s.

• Alice recovers s = KDSK(ψ).

The converse is also very similar, just view the first message as the public key PK of the
KEM, the second message from Bob — as the ciphertext, Alice’s coins for the first message
as SK, and Bob’s key as the value s.

Applied to the DH key exchange, we exactly get the above KEM! Indeed, the public key
is gx, and encryption of the key grx is indeed gr. Combining with Lemma 3, we get

Lemma 4 Under the DDH assumption in QRp, the ElGamal KEM is CPA-secure.

Security of the ElGamal Cryptosystem. We can now use the following generaliza-
tion of the one-time pad lemma to deduce a similar security for ElGamal encryption:
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Lemma 5 (Generalized One-Time Pad Lemma) Let (G, ·) be a group, and R denote
the uniform distribution over G. For all the distributions X,Y (not necessarily indepen-
dent), if (X,Y ) ≈ (X,R), then for all m0,m1 ∈ G, we have (X,Y · m0) ≈ (X,Y · m1).
More generally, the “CPA-analog” of this result is true as well, where the PPT attacker is
allowed to choose m0,m1 based on X.

Proof: Just substitute · for ⊕ in the proof of the One-Time Pad Lemma (see Lecture 6).
We leave the “CPA-analog” as an exercise.

Using this result, we immediately get

Theorem 3 Under the DDH assumption, the ElGamal cryptosystem is an IND secure PKE.

Finally, we remark that we can also prove a weaker one-time secuirty of ElGamal under
a weaker CDH assumption.

Theorem 4 Under the CDH assumption, the ElGamal cryptosystem (or KEM) is a One-
Way secure PKE.

Proof: For the sake of contradiction, let us assume that the ElGamal cryptosystem is not
a One-Way secure PKE:
∃ PPT algorithm A such that:

Pr[A(gx, gr, gxr ·m) = m | p = 2q + 1, |p|=k, p, q primes, x←r Zq, g generator of G] = ǫ

for some non-negligible ǫ.
Using a reduction approach, we now construct an algorithm A′ which, given black-box

access to the algorithm A, can efficiently solve the DHP with non-negligible probability,
contradicting the hypothesis. On input (gx, gr), for random x and r in Zq, A

′ chooses
c ←r Zq and runs A(gx, gr, gc): with probability ǫ, A will decrypt the ‘ciphertext’ gc and
thus will output m̃ = gc · (gxr)−1. At this point, A′ computes gc · m̃−1 as its guess for gxr.
Therefore, with probability roughly ǫ, A′ will successfully solve the Diffie-Hellman Problem.

Remark 1 Quite interestingly, based on two different assumptions, it is possible to show
that the same construction fulfil two different notions of security. Moreover, the assumption
made and the security obtained are well-coupled: assuming that it is difficult to completely
solve the DHP leads to the difficulty of completely breaking the ElGamal PKE; assuming that
it is infeasible to learn anything useful about the solution of the DHP leads to the difficulty
of learning anything useful about messages encrypted with the ElGamal PKE.

2.3 Other Efficient Encryption Schemes

There are other IND-CPA-secure encryption schemes. In the homework we will study the
original Goldwasser-Micali (GM) cryptosystem, which allows one to encrypt messages bit-
by-bit (so it’s not very efficient) and is secure under the quadratic residuosity assumption.
The GM scheme is also homomorphic over Z2. A more recent efficient cryptosystem is called
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a Paillier encryption, and is based on a stronger decisional variant of the RSA assumption
which we will not state here. This schemes directly allows one to encrypt relatively large
messages, but taken over group Zn, where n is a certain RSA-type modulus. Similarly
to ElGamal, it is also homomorphic. Unlike ElGamal, it is homomorphic under modular
addition rather than multiplication, so it’s more convenient to use in many applications.

Finally, we will come back to public-key encryption when studying a stronger attack
called chosen ciphertext attack (CCA), as opposed to the CPA attack we studied so far.

3 Secret-Key Encryption

We now return back to symmetric-key encryption. First, we remind ourselves the definition
of Secret-Key encryption. (Notice the similarity to the definition of Public-Key encryption
given in Lecture 6.)

Definition 6 A Secret-Key encryption (SKE) is a triple of PPT algorithms E = (G,E,D),
where

1. G(1k) as before outputs (PK,SK,Mk), PK,SK,MK being a public key, secret key,
and message space respectively. k is the security parameter.

2. E(m;PK,SK, r) is the encryption algorithm that outputs ciphertext c. Note the
difference: the input includes the secret key SK. The presence of the secret key
contrasts SKE and PKE.

3. D(c;SK), which is usually deterministic, outputs a decrypted message m̃ ∈ {invalid}∪
Mk.

As before, we require the correctness property: ∀m ∈ Mk, m̃ = m. That is, if m was
correctly encrypted using appropriate secret and public keys. ♦

For simplicity, we will omit PK and incorporate all PK information into SK. The use of
PK may yield more efficient implementations because it may help reduce the size of the
secret storage. Omitting the public key, however, will not cause any loss of generality in
our discussion below. Thus, we often denote SK = s and write c← Es(m), m← Ds(m).

Now that SKE is defined, we will attempt to formally define the security notions for
SKE.

3.1 One-Message IND-Security Against PK-Only Attack

We start with the simplest definition of security. Our first objective is to obtain security
for one message only with adversaries unaware of any non-public information and unable
to choose plaintext.

Definition 7 SKE is one-message IND-secure against PK-only attack iff for any two
messages, their ciphertexts are polynomially indistinguishable. ∀m0,m1 ∈ Mk, Es(m0) ≈
Es(m1). ♦
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Example 1. One-Time Pad satisfies the above definition of security. Formally, G(1k)→
(⊥, R,Mk), where Mk = {0, 1}k, R ∈Mk is a random string.
Let ER(m) = m ⊕ R and DR(c) = c ⊕ R. It is easy to see that ER(m0) ≡ ER(m1), since
both define truly random strings.

Example 2. One can reduce the size of the secret key in Example 1 by generating a
pseudo-random string of size k using a PRG G : {0, 1}k → {0, 1}n where n = p(k). Because

G(x) ≈ {0, 1}p(x), we can use the one-time pad lemma to conclude that this more efficient
version is one-message IND-secure.

The two examples above are no longer secure if more than one messages are to be
encrypted. Indeed, m0⊕m1 = c0⊕ c1 can be obtained by an adversary should he intercept
ciphertexts c0 and c1 for m0 and m1. Therefore, we are in need of a better definition of
IND-security for SKE. This is in contrast to the PKE, where one message security implied
multiple message security.

3.2 SKE IND-Security With Respect To Multiple Messages

Definition 8 SKE is IND-secure with respect to multiple messages against PK-only attack
iff ∀t = poly(k),∀m1

0,m
2
0, ...,m

t
0 and m1

1,m
2
1, ...,m

t
1 ∈Mk,

Es(m
1
0) ◦ Es(m

2
0) ◦ . . . ◦ Es(m

t
0) ≈ Es(m

1
1) ◦ Es(m

2
1) ◦ . . . ◦ Es(m

t
1)

♦

In particular, this definition suggests that no information can be inferred about any of
the mi’s as long as the number of transmitted messages is polynomial in k, the security
parameter. Applying the hybrid argument, it can be shown that the following definition is
equivalent to Definition 8.

Definition 9 SKE is IND-secure with respect to multiple messages against PK-only attack
iff ∀t = poly(k),∀i ≤ t,∀m1,m2, . . . ,mi−1,mi

0,m
i
1,m

i+1, . . . ,mt ∈Mk,

Es(m
1) ◦ . . . ◦ Es(m

i−1)◦ Es(m
i
0) ◦Es(m

i+1) . . . ◦ Es(m
t) ≈

Es(m
1) ◦ . . . ◦ Es(m

i−1)◦ Es(m
i
1) ◦Es(m

i+1) . . . ◦ Es(m
t)

♦

Notice, the last definition can be viewed the following way. The adversary chooses
messages m1,m2, . . . ,mi−1,mi+1, . . . ,mt, as well as a pair of messages mi

0,m
i
1. Then the

adversary gets to see the encryptions of the messages that it chose, and the encryption
of mi

b for a random bit b. The adversary then has to guess the bit b. Notice, since the
adversary is unable to compute any of the encryptions by itself (unlike was possible in the
PKE), it essentially means that A has oracle access to the encryption oracle Es(·)! Except
this oracle access is “non-adaptive”: all the messages have to be chosen at the beginning,
and all the encryptions have to be given. From this point of view, it seems more natural to
not place this unnatural restriction, and give A complete oracle access to Es(·). Namely, at
any point during its run, A can ask the oracle to encrypt any message m, and will get back
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Es(m). At some point A chooses two messages m0 and m1. Then one of them mb, will be
encrypted, and c̃← Es(mb) will be given to A (for random unknown b). At this point A can
again ask the oracle to encrypt a bunch of messages. Finally, A tries to predict b correctly.
This is exactly the chosen plaintext attack (CPA). It also explains why we used the same
terminology on the public-key setting: the explicit encryption oracle was implicitly given
to the adversary by means of the public key PK!

We address IND-security against CPA in the next section.

3.3 SKE IND-Security Against Chosen Plaintext Attack (CPA)

The following definition summarizes what is said above. We denote by AEs the adversary
who is given oracle access to Es(·), as explained above.

Definition 10 SKE is IND-secure against CPA iff ∀PPTB = (B1, B2),

Pr[ b = b̃ | s← G(1k);

(m0,m1, β)← BEs

1 (1k);
b← {0, 1};
c̃← Es(mb);

b̃← BEs

2 (c̃, β); ] ≤ 1
2 + negl(k)

♦

To reiterate, this means that even if the adversary has an encryption oracle who will
encrypt any message the adversary wants (without revealing the secret key), and if the
adversary is free to produce any two messages and encrypt them using the oracle, and use
any information thus obtained, including the ciphertexts of the two chosen messages, the
adversary will still have a negligible advantage in guessing which of the two messages was
encrypted by the experimenter.

Now we indicate that Definition 10 is at least as strong as Definition 8 (in fact, can be
shown to be strictly stronger), i.e. a SKE that is IND-secure againts CPA can be safely used
to transmit multiple messages.

Lemma 6 If SKE E is IND-CPA-secure, then SKE E ′ with encryption function E′

s(m0, . . . ,mt) =
Es(m0) ◦ . . . ◦ Es(mt), is also IND-CPA-secure, for any t = poly(k).

This result is proven using the hybrid argument in a completely identical manner than
a similar result for the PKE was shown. Indeed, having oracle access to the encryption
function allows the adversary to prepare encryptions of m0

1, . . . ,m
0
i−1,m

1
i+1, . . . ,m

1
t which

are needed for the hybrid argument. The inability to make such encryptions is exactly the
reason the proof fails in general for one-message IND-secure SKE’s.
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In this lecture we build some IND-CPA-secure schemes. Our initial schemes, based on
iterating a PRG, are stateful. We then turn to the question if there exists a stateless IND-

CPA-secure SKE.

1 Building CPA-Secure SKE: Stream Ciphers

No CPA-secure encryption can be deterministic, since the adversary B2 can always ask its
oracle to re-encrypt m0 and m1. There are two ways out. One way is to make the encryp-
tion probabilistic. We will come back to this later. For now, we explore the second way:
make the encryption stateful. Namely, every time the encryption/decryption operations are
performed, the secret key (so called state) will change as well.

Definition 1 Stateful SKE is a usual SKE with the following modifications. Encryption
and decryption functions E and D additionally output the new value of the secret key s,
which be used for subsequent encryption/decryptions. Formally, E(m; s) ouptuts a pair
(c, s′), where c is the ciphertext and s′ is the new state (secret key). Similarly, D(c; s)
ouptuts a pair (m, s′), where m is the plaintext and s′ is the new state (secret key). We
require that the decryption and encryption are always in sink: a decryption of c must be
performed after every encryption of m. ♦

We must also mention that in the definition of CPA-secure SKE, oracle access must keep
state as well. This is so because the policy of updating the secret key should be considered
public as a part of the algorithm’s encryption and decryption functions.

We notice that having state eneables us to possibly have determinisitc stateful schemes,
as we illustrate.

Example 1: Blum-Micali Generator For One Bit. CPA-secure encryption of multiple
messages can be achieved using the following stateful algorithm.
Let f : Mk →Mk be a OWP and h : Mk → {0, 1} be a hardcore bit of f .
Encryption function: Es(b)→ (c = h(s)⊕ b, s← f(s)).
Decryption function: Ds(c) = (m = h(s)⊕ c, s← f(s)).

In other words, we simply keep applying the Blum-Micali PRG and using each successive
bit as the next one-time pad. The CPA-security of this scheme follows immediately from
the one-time pad lemma and the fact that Blum-Micali generator is a PRG. In fact, even if
we reveal the adversary the entire state (secret key) after we encrypt the challenge bit b, we
proved that the adversary cannot predict b. Thus, this method is forward-secure. Loosing
the current secret key protects all the previous encryptions.

Notice also that 1-bit limitation is not an issue. Simply generate more bits to encrypt
longer message, and use these bits as a longer one-time pad. This is because we showed
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the closure of CPA-secure (as opposed to the one-time secure) symmetric encryption under
composition.

Example 2: Using Any PRG. Previous construction could be viewed as using the Blum-
Micali generator G(x) = G′(x) ◦ fn(x) (see Lecture 5 for notation). In fact, if we write
G(x) = G1(x) ◦G2(x), where G : {0, 1}k → {0, 1}n+k, and |G1(x)| = n, |G2(x)| = k, we get
the that the above construction is a special case of the following more general construction,
which works for any PRG G.

Let s← {0, 1}k be the initial secret.
To encrypt m ∈ {0, 1}n having current state s, output c = m⊕G1(s), and update s = G2(s).
To decrypt c ∈ {0, 1}n having current state s, output m = c⊕G1(s), and update s = G2(s).

Again, CPA-security of this stateful construction follow quite easily from the one-time
pad lemma, since G1(s) ◦ G1(G2(s)) ◦ . . . ◦ G1(G2(. . . G2(s) . . .)) was shown to be a PRG

in the previous lectures. In fact, since the PRG above is forward-secure, we get that our
general scheme is forward as well (i.e., loosing current state does not compromise previous
encryptions).

Example 3: Using DDH. This is a special case of Example 2 above, which is obtained
by noticing that the DDH assumption immediately gives rise to a new and effiicent PRG!
Indeed, let us assume that the prime p = 2q +1 and the and generator g of the subgroup G

or quadratic residues modulo p are fixed and public. Now consider the following function
G : Zq ×Zq → G×G×G (recall from the last lecture that Zq is isomorphic to G, and also
we can easily map between them, so one can view G as going from Z2

q to Z3
q ):

G(a, b) = 〈ga, gb, gab〉

The DDH assumption states that this G is indeed a PRG (with output indistingushable from
〈ga, gb, gc〉 for random a, b, c). This gives an efficient PRG which expands its random input
by 50%, going from 2k to 3k bits.

Even more optimized, let us fix another random generator h of G (i.e., one can think
of h = ga for a random a which is chosen once and for all). Now define length-doubling
G : Zq → G×G (or, alternatively, from Zq to Z

2
q) by

G(b) = 〈gb, hb〉

Once again, writing h = ga for a random (unknown) a, the attacker’s view 〈g, h, G(b)〉 ≡
〈g, ga, gb, gab〉 ≈ 〈g, ga, gb, gc〉, implying that G is a PRG which goes from k to 2k bits. As it
turns out, this construction works even if h = ga is fixed “forever” and only new b is chosen
for every fresh invocation of G.

Lemma 1 For any polynomial t = t(k), the DDH assumption implies that, for random
a, b1, . . . , bt, c1, . . . , ct ← Zq, we have

〈g, ga, gb1 , gab1 , . . . gbt , gabt〉 ≈ 〈g, ga, gb1 , gc1 , . . . gbt , gct〉 (1)
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Proof: Given a tuple 〈g, ga, gb, gc〉, where c is either ab mod q or random, for j = 1 . . . t,
pick random dj , ej ← Zq and define

gbj = (gb)djgej ; gcj = (gc)dj (ga)ej

Notice, gbj and gcj can be computed efficiently from ga, gb, gc and dj , ej . Mathematically,
however, if we write c = ab + z, where z = 0, when c = ab, and random, when c is random,
we have

bj = bdj + ej mod q; cj = (ab + z)dj + aej = zdj + a(bdj + ej) = zdj + abj

Notice, since ej is random, all values bj = bdj + ej are random and independent of each
other, even conditioned on known dj . Moreover, if z = 0 (DDH-tuple), we always have
cj = abj , meaning that we get precisely the left hand side of Equation (1), for random bj .
On the other hand, when z is random (non-DDH typle), with high probability z 6= 0, and
all the values cj = zdj +abj are completely random and independent from each other, since
the dj ’s are completely random and independent from each other (and the bj ’s). Hence,
ignoring the negligible case of z = 0, we get precisely the right hand side of Equation (1).

Notice, the reduction above is tight, as we surprisingly did not use the hybrdi argument!

We remark that SKE constructions above, namely those stateful schemes that simply
keep outputting a steam of pseudorandom bits (to be used as one-time pads), are called
stream ciphers. They should be contrasted with block ciphers we will mention the next
lecture.

2 Criticism + Looking Ahead

We notice that in stateful schemes, the sender and the receiver must be synchronized at all
times to ensure correctness of decryption. This may be achieved by either agreeing on the
policy of updating the secret key at encryption and decryption of each message. This is a
disadvantage.

As one was to circumvent this, assume we can ensure that the state of the scheme has the
form (s, count), where s is the “real” secret key, which never changes, while count is a simple
counter that tells how many messages have been encrypted so far. Namely, the only change
to the state is the instruction count = count + 1. In this case, even if the synchronization
is temporarily lost, the sender and the recipient can exchange their counters, and reset the
counter to the maximum value. It is easy to see that this exchange of counters will not
conflict with IND-security, while will partially eliminate the problem of synchronization.

We notice, however, that our scheme from the previous section is not of this form. Thus,
the first question we ask is:

• Question 1: Can we build a deterministic stateful CPA-secure SKE with the counter,
as explained above?

The second question is whether we can have a stateless SKE, as we had for PKE. Naturally,
this has to be randomized.
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• Question 2: Can we build a randomized stateless CPA-secure SKE?

Finally, assuming the answer to the questions above is “yes”,

• Question 3: What achieves greater security/efficiency: (state+determinism) or (no
state+randomization)?

To answer all these questions, we introduce the concept of Pseudo Random Function
Family (PRF), a really strong cryptographic primitive with several interesting properties.
Afterwards, we present a very important application of PRFs, namely a new argument
technique which allows us to separate the discussion of efficiency issues from the analysis of
the security of the system.

3 Pseudo Random Function Family

3.1 Introduction

When we introduced Pseudo Random Generators, we saw that they are “efficient stretchers
of randomness”: given a truly random k-bit string, a PRG outputs a much longer (but
polynomial in k) stream of bits that “looks random” with respect to any real (i.e. PPT)
algorithm. Now we want to go further, and try to answer the question: can we do better?
In other words, can we extract an exponential amount of pseudo random bits from a k-bit
long seed?

Stated this way, this question does not really make sense, since it is impossible to even
write down such a sequence efficiently. Anyway, we may want to know whether we can
get an implicit representation of an exponential number of bits. One well-known class of
exponentially long objects having “short” descriptions is that of computable functions, since
the dimension of a mapping from {0, 1}ℓ to {0, 1}L is 2ℓ ·L.
After all, our question may be rephrased as:

Can we use a k-bit long seed s to efficiently sample a computable function fs

from the space R(ℓ(k), L(k)) of all possible functions F : {0, 1}ℓ(k) → {0, 1}L(k),
in an ‘almost-random’ manner?

3.2 Definition

The essence of the above question can be formalized by the following definition.

Definition 2 [Pseudo Random Function Family]
A family F = 〈fs | s ∈ {0, 1}k〉k∈N is called a family of (ℓ(k), L(k)) Pseudo Random
Functions if:

• ∀k ∈ N,∀s ∈ {0, 1}k, fs : {0, 1}ℓ(k) → {0, 1}L(k);

• ∀k ∈ N,∀s ∈ {0, 1}k, fs is polynomial time computable;

• F is pseudo random: ∀ PPT Adv

∣
∣Pr[Advfs(1k) = 1 | s←R {0, 1}k]−Pr[AdvF (1k) = 1 | F ←R R(ℓ(k), L(k))]

∣
∣ ≤ negl(k)
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♦

In other words, for a family F to be pseudo random, it is not required for its generic
element fs to be indistinguishable from a function F drawn at random from R(ℓ(k), L(k));
rather, the behavior of any PPT adversary Adv which is given oracle access to the function
fs must be indistinguishable from the behavior of the same adversary when given oracle
access to a function F :

∀ PPT Adv Advfs ≈ AdvF

To put this yet in another way, imagine there are two distinct worlds: in the first world
the adversary Adv queries a function chosen from the family F , while in the second world
the adversary’s queries are answered by a truly random function F . Here by “truly random
function” we mean a black box which outputs a fresh random value on each invocation,
except that it is consistent, i.e. if queried twice on the same value, it always returns the
same output. Now we say that F is a good family of PRFs if, although the outputs given by
fs are clearly correlated while F ’s answers are completely independent, the behavior of the
adversary is essentially the same, so that it is not possible to tell these two worlds apart.

Comments.
Observe that this is a very strong requirement: how is it possible that no efficient adversary
can realize whether it has been interacting with a function fs that uses only k bits of
randomness or with a function F that consist of 2ℓ(k) ·L(k) random bits? A partial answer
is that the adversary can only make polynomially many queries, and thus it doesn’t have
enough time to infer which “world” it is in.

3.3 PRFs vs PRGs

Our initial intent was to generalize the notion of PRG: this is indeed the case, since it
actually turns out that PRGs can be viewed as a particular instantiation of PRFs.

In the case of a PRF, the adversary is given oracle access to the chosen function fs; in
the case of a PRG, since the output of a generator G is just polynomially long (say kc), the
adversary can be given the entire string G(s).

Anyway, it is trivial to simulate the knowledge of the string G(s) using oracle access to
a function fs: the adversary may ask which bit it wants to know (specifying its position),
and the oracle replies with the value of that bit. Since the position of one bit in a kc long
string can be determined using c log k bits, and the answer is always one bit long, PRGs
may be thought as PRFs where ℓ(k) = c log k and L(k) = 1.

Therefore, for ℓ(k) = O(log k), PRFs degenerate to PRGs; to ensure a gain in power with
respect to PRGs, we have to enforce the non-triviality condition: ℓ(k) = ω(log k).

Notice, the moment non-triviality of the input length is ensured, there is no theoretical
reason to lower bound for the output length value L(k). This is because since any “non-
trivial” family F of PRFs, — even the one with output lengh L(k) = 1, — can be easily
extended to a family F ′ with L(k) = kc: for each fs ∈ F , we include in F ′ the function
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f ′

s : {0, 1}ℓ(k)−c log k → {0, 1}k
c

defined as follows:

f ′

s(x
′) = fs(

c log k
︷ ︸︸ ︷

0 . . . 0 x′) ◦ fs(

c log k
︷ ︸︸ ︷

0 . . . 1 x′) ◦ . . . ◦ fs(

c log k
︷ ︸︸ ︷

1 . . . 1 x′)
︸ ︷︷ ︸

kc bits

Of course, in practice evaluating such a function bit-by-bit is very slow, but it de-
mostrates that worrying about the output length is somewhat of a secondary issue, as long
as we can construct a PRF with a “non-trivial” input length.

4 A general construction for PRFs

Once we have defined the notion of PRF family, we look at the problem of building such a
family, and of the minimal assumption for the construction to go through. Surprisingly, it
turns out that the existence of PRG implies the existence of PRF, although the transforma-
tion is too elaborated to be useful in practice. This result is due to Goldreich, Goldwasser
and Micali, and is therefore known as GGM construction.

The GGM construction presents a loose resemblance to the technique used to obtain
an IND-CPA secure stateful SKE scheme from any length-doubling PRG G. Recall from the
previous lecture that to this aim we denote by G0(x) and G1(x) respectively the first and
the second halves of the output of G(x):

G : {0, 1}k → {0, 1}2k G0, G1 : {0, 1}k → {0, 1}k

G(x)
.
= G0(x) ◦G1(x)

To encrypt the first message, we apply G to the shared key s0 and set the new state s1

to be G0(s0), while masquerading the message with the pad p1 = G1(s0). The next time a
message must be encrypted, the generator G will be applied to the new state s1, yielding
s2 = G0(s1) and p2 = G1(s1). We can think of the whole process as the construction of
an unbalanced binary tree (sketched in figure 1), in which we always go down to the left:
the problem with this approach is that to have n leaves, we have to construct a tree with
height n.

Figure 1: The unbalanced binary tree in the stateful SKE construction.

Clearly, it would be much more efficient to construct a complete binary tree, since this
would give 2n leaves on a tree of height n. To do so, for each fixed s ∈ {0, 1}k we define
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Gx(s) through the following recursion:

Gε(s) = s

G0◦x̄(s) = Gx̄(G0(s))

G1◦x̄(s) = Gx̄(G1(s))

Figure 2: The complete binary tree in the GGM construction.

But how does this construction relate to Pseudo Random Functions? To sample a
function fs : {0, 1}ℓ(k) → {0, 1}k given a random seed s ∈ {0, 1}k, define fs(x) = Gx(s). In
this way, each input x identifies a path in the complete binary tree having s as root, and
the output of the function fs is the value associated to the leaf down such path. According
to the definition of Gx(s), to compute the function fs on a single input it is necessary to
evaluate the generator G ℓ(k) times, which is still polynomial, although not very efficient.

It is not obvious that the above construction defines a family F of PRFs: we are extract-
ing 2ℓ(k) different values out of one single truly random string! Still, no efficient adversary
bears a (significantly) different behavior whether it interacts with this function or with a
genuine random function (i.e. a function in which the 2ℓ(k) “leaves” are all random values).
This claim is proved in the following theorem, which makes an extensive use of the hybrid
argument.

Theorem 1 (Goldreich-Goldwasser-Micali)
The family F = 〈fs | s ∈ {0, 1}k〉k∈N where fs(x) = Gx(s) (as explained above) is a family
of (ℓ(k), k) Pseudo Random Functions.

Proof: To prove this theorem we want to use the hybrid argument: anyway, in this case
the situation is a little different from what we have seen so far, since what we want to prove
is not that a single pair of objects are computationally indistinguishable (like in G(s) ≈ R),
but rather that an infinity of related pair of objects are indistinguishable from each other:

∀ PPT Adv Advfs ≈ AdvF

Accordingly, to apply the hybrid argument, we need to find a sequence of oracles
T0 . . . Tpoly(k) such that fs ≡ T0, F ≡ Tpoly(k), and for all the intermediate oracle it holds
that:

∀ PPT Adv AdvTi ≈ AdvTi+1
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Let’s start defining the appropriate sequence of oracles. Observe that both fs and F

are queried from the adversary Adv about the value (in some specific point) of the function
they “represent”. As a consequence, we can think of those oracles as a set of 2ℓ(k) nodes,
each containing the value of the function in one of the possible inputs.

In the case of fs, this nodes can in turn be thought as the leaves of a complete binary
tree of height ℓ(k), whose root contains the seed s: this is the tree we talked about when
discussing the construction of the function fs from the PRG G(x) = G0(x) ◦G1(x). We can
think in a similar way also about the oracle F , even if in the case the “tree structure” is
not inherent to its construction: all the nodes in the tree are “empty” nodes, except for the
leaves, which contain all the random values of the F .

Stated this way, it is easier to figure out a possible way to “smoothly change” the oracle
fs into the oracle F : instead of having randomness only in the root, and computing all the
rest of the tree (and in particularly the leaves, using the PRG G (as in fs); or having all the
randomness in the leaves, so that nothing is to be computed pseudorandomly (as in F ), we
can define the intermediate oracle Ti to have an empty tree structure from level 0 to level
i− 1, all nodes at level i containing truly random values, and the rest of the tree from level
i + 1 to level ℓ(k) (where we find the leaves, i.e. the values returned by this oracle) being
calculated via successive applications of the pseudo random generator G.

Figure 3: The sequence of oracles used in the first hybrid argument.

In this way we have constructed polynomially many intermediate oracles: in particular
fs ≡ T0, since the randomness is only at level 0 (i.e. the root), and all the rest is computed
through applications of G; in addition, F = Tℓ(k), since all the structure above the level
ℓ(k) (i.e. the last level of the tree), is empty, and the randomness is contained directly in
the leaves (see figure 3). Therefore, by the hybrid argument, we can reduce the proof of the
theorem to proving that:

∀ PPT Adv AdvTi ≈ AdvTi+1

To this aim, let us fix an arbitrary adversary Adv, and prove that AdvTi ≈ AdvTi+1 :
having shown that, from the generality of such adversary the above statement will hold
true, and thus the proof of this theorem will follow.

Since Adv is a PPT algorithm, it can do at most a polynomial number of queries to
its oracle, say t = poly(k). In order to prove that the behavior of Adv with oracle Ti

is indistinguishable from the behavior of Adv with oracle Ti+1, we want to use again the
hybrid argument: let’s look at the correct sequence of intermediate oracle to use.

It would be tempting to consider the sequence of oracles Tij in which the randomness is
contained in the first j nodes at level i, and in the children (at level i + 1) of the remaining
nodes at level i (see figure 4).

Clearly the two extreme of such sequence would be Ti and Ti+1, but how many interme-
diate oracles would result? At level i there are 2i nodes, and so when i approaches ℓ(k) there
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Figure 4: A first (wrong) step towards the second hybrid argument.

would be exponentially many intermediate oracles, way too much for the hybrid argument
to go through.

How can we find a way out this situation? Recall that the adversary Adv queries its
oracle at most t time; intuitively, the problem with the intermediate oracles Tij was that they
induced a “too fine” differentiation: since Adv makes just t queries, having t intermediate
oracles must suffice.

Accordingly, for j ∈ [0..t], define the intermediate oracle Tij as follows: to answer each of
the first j queries posed by Adv, the oracle Tij associates a random value to the unique node
at level i that lies in the path from the root to the leaf containing the value requested by the
query, and then it computes the requested value via ℓ(k)− i applications of the generator G

(notice that up to now this is exactly the behavior born by the oracle Ti). Beginning with
the (j + 1)st query, the oracle Tij starts behaving like Tj : to respond to a request for the
value associated with a certain leaf, the oracle picks a random value and puts it inside the
ancestor at level i + 1 of the leaf at hand; afterwards, it computes (as usual) the desired
value through ℓ(k) − i − 1 calls to the PRG G. There is a last technicality to be added to
completely specify the oracle Tij : it acts consistently, i.e. if, while looking at the path from
the root to the leaf associated to the value requested by Adv, the oracle Tij finds out that
an ancestor of that leaf has already been filed out (in answering a previous query), it uses
that ancestor to compute the value of the leaf, without adding any new randomness to the
tree.

Now this sequence is well-suited: it consists of t + 1 intermediate oracles, and Ti ≡ Ti0,
while Ti+1 ≡ Tit. To complete this hybrid argument, it is left to prove that AdvTij ≈
AdvTij+1 . But this is of course the case, since the only difference between the two oracles
is that one answered Adv’s (j + 1)st query putting a random value z at level i (and thus
filling its left child l and its right child r with G0(z) and G1(z) respectively), while the
other answered the same query putting two random values R1 and R2 respectively in l and
r. If Adv behaves differently in the two cases, it would imply that Adv is able to distinguish
between G(z)

.
= G0(z)◦G1(z) and R1 ◦R2 ≡ R, or, in other words, G(z) 6≈ R, contradicting

the pseudorandomness of the generator G used in the GGM construction. It follows that
AdvTij ≈ AdvTij+1 , for any j, which entails (by the hybrid argument) that AdvTi ≈ AdvTi+1 .
From the arbitrariness of Adv, this holds true for any i, and finally (again by the hybrid
argument):

∀ PPT Adv Advfs ≈ AdvF

Remark 1 This is by far the most intensive use of the hybrid argument we have seen: it
is actually so intense that in the reduction we lose an important fraction of the advantage.
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This is because, from the proof of the validity of the hybrid argument (see Lecture 5), we
know that if the advantage in distinguishing two intermediate distributions is ǫ, then the
advantage in distinguishing between the two initial distributions can increase by a factor
equal to the number of intermediate elements. Therefore, in our case, we are losing a factor
of t · ℓ(k) in comparison with the advantage in breaking the initial PRG.

5 More Efficient Construction under DDH

The GGM construction is very interesting: it features an original application of the hybrid
argument and it demonstrates the use of complete binary trees to build complex primitives
out of known, more basic ones. Anyway, the structure of the reduction is such that the
construction loses both in efficiency and in security with respect to the underling “building
block”, namely the pseudo random generator G.

For these reasons, PRFs to be used in practice cannot be obtained in this way: a more
concrete, number-theoretic construction is needed. Below we present one of the best-to-
date practical (and yet provable!) construction, due to Naor-Reingold, which is based on
the DDH assumption.

The construction works in the group G = QRp of quadratic residues modulo p, where p

is a strong prime (i.e. it is of the form p = 2q + 1, for some prime q.) In this setting, the
DDH assumption can be stated as:

〈g, ga, gb, gab〉 ≈ 〈g, ga, gb, gc〉

where g is a random generator of G and a, b, c are chosen uniformly at random in Zq.
For a given choice of the (public) parameters p, q, g, the Naor-Reingold pseudo random

function family is NR = 〈NRp,g,a0,a1,...,aℓ
| a0, a1, . . . , ak ←R Zq〉ℓ∈N, where each function

NRp,g,a0,a1,...,aℓ
: {0, 1}ℓ → G is defined as follows:1

NRp,g,a0,a1,...,aℓ
(x1, . . . , xℓ) = (ga0)

∏

i∈S(x) ai
where S(x) = {i ≥ 1 | xi = 1}

In other words, the input x = x1, . . . , xℓ is considered bit by bit and, for each xi equal
to 1, the corresponding value ai is included in the modular exponentiation. The advantage
of such definition is that the value of the function on a particular point can be computed
with O(ℓ) multiplications: we can compute the exponent α = a0

∏

i∈S(x) ai mod q with at
most ℓ multiplications, and then compute gα mod p with at most 2ℓ multiplications (using
the “Square & Multiply” algorithm.)

The NR construction for PRFs can be though as a particular instantiation of the
complete binary tree technique seen in the GGM construction, where the PRG used is
Gp,q,g,a(g

b)
.
= G′

0(g
b) ◦ G′

1(g
b) = 〈gb, gab〉. However, in some sense, the solution proposed

by Naor Reingold also generalizes the previous construction, since a different exponent ai

is considered at each level of the tree, while in the standard GGM the same PRG is used at
all levels. This is shown in figure 5.

1Notice, the output of the construction is a random element of G. However, we already know a deter-

ministic map that can turn it into a random element of Zq.
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Figure 5: The complete binary tree in the NR construction.

The proof of security of this PRF family bears a close resemblance to the proof of
the previous theorem; consequently, we state the result without explicitly including the
supportive argument. We mention, however, that the actual security of the NR PRF is
better that that of the GGM construction. In particular, the former “lost” a factor tℓ in
its security, where t is the qumber of PRF queries made by the attacker and ℓ is the input
length. In contrast, a clever “random self-reducibility” argument from Lemma 1 allowed
Naor and Reingold to lose “only” a factor ℓ in the security reduction. Namely, we only use
the “outer” ℓ hybrids of the GGM construction (one per level of the tree). Inside each level
i, we use Equation (1) (with value a = ai) to directly show that giving oracle access to Ti

is indistinguishable from giving oracle access to Ti+1, under the DDH assumption.

Theorem 2 (Naor Reingold)
Under the DDH assumption, the family NR = 〈NRp,g,a0,a1,...,aℓ

| a0, a1, . . . , aℓ ←R Zq〉ℓ∈N

is a PRF family with O(ℓ) security loss when reduced to DDH.
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Last time we introduced the concept of Pseudo Random Function Family (PRF), and
showed a generic construction of PRFs from PRGs, as well as a more efficient construction
under the DDH assumption. This lecture we present several important applications of PRFs.
First, a new argument technique which allows us to separate the discussion of efficiency
issues from the analysis of the security of the system. And, second, how to apply PRFs
to easily build CPA-secure symmetric cryptosystems. In particular, we will answer the 3
questions we asked in the previous lecture.

1 Applications of PRFs

Pseudo Random Functions are a very powerful cryptographic tool: their key property —
no efficient algorithm substantially changes its behavior whether it interacts with a pseudo
random function or a truly random one — is so strong that we can do a lot of things with
PRFs. Let’s look at some simple applications.

1.1 Identify Friend or Foe

The problem of identifying friend or foe (IFF) consists in deciding, in a dynamic setting,
whether you are facing an enemy or an ally. Consider an air battle between two parties
A and B, in which all the planes belonging to the same air force share a secret value, and
let i and j be respectively the secret associated with parties A and B. Before shooting a
potential target, a warplane of party A challenge the target with a random r: if the target
reply with fi(r), then it is identified as a friend and it is not destroyed. In this scenario, the
adversary will not be able to reply correctly, since even after seeing many pairs (r′, fi(r

′)),
he still has negligible probability in predicting the value fi(r) for an unseen, random r.
Concretely, if the attacker saw up to q previous (r′, fi(r

′)) pairs, and (negligibly small) ε
is the security of our PRF against a distingusiher making at most q PRF queries, then the
maximum probability the attacker can predict the k-bit value fi(r) is at most ε+ q

2k , which
is negligible. Moreover, since this setting is dynamic, the adversary has no time to mount
a “man-in-the-middle” attack, forwarding the challenge to another warplane: indeed, the
adversary itself cannot distinguish its friends from its enemies!

1.2 The Random Function Model

The most important application of Pseudo Random Functions is that they enable a higher
level technique to argue about security. Given a cryptographic scheme which uses PRFs, to
prove its security against an adversary, we consider the chances the adversary Adv has to
break the system in the Random Function Model, where every pseudo random function fs
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is replaced with a truly random function F . What we gain from this transformation is that
it is usually simpler to deal with security in the Random Function Model, since one can
make use of Information-Theoretic considerations to show that the adversary’s advantage
(whatever it is defined to be) is negligible. Then, we can argue that Adv’s advantage remains
negligible even in the original scheme, because otherwise we would have found an efficient
algorithm (the adversary Adv) whose behavior is significantly different whether it interacts
with a PRF or a truly random one, contradicting the definition of PRF.

In brief, to argue about a cryptographic scheme that uses PRFs, we proceed as follows:

1. we discuss its efficiency in the PRF world;

2. we prove the security (information-theoretically) in the Random Function Model;

3. we conclude that the original system is also secure when using PRF, since otherwise
we would contradict the pseudo randomness of the PRF family.

The only thing to care of is that in going from point 1 to point 2, it is allowed to
substitute random functions only in place of pseudo random function fs whose seed s is
never shown to the adversary Adv, because otherwise fs will not “look random” to Adv.

This is a powerful technique, that allows us to quickly establish the security of complex
constructions: we discuss two examples in the following subsections.

1.3 Construction of an IND-CPA-secure SKE with counter as state

Now that we have developed the new tool of PRFs, it is a simple matter to define a stateful
SKE scheme IND-secure against chosen plaintext attack which uses a simple counter to
maintain the state. This scheme is known as CTR scheme.

1. On input 1k, the key-generation algorithm G chooses a family F of PRFs, and sets
the public key PK to be the description of that particular family (for example, in the
case of the NR construction, this consists of the choice of the strong prime p = 2q +1
along with a generator g of QRp.) Afterwards, G takes a random seed s ∈ {0, 1}k and
sets SK = s. Finally, G outputs (PK, SK, Mk), where Mk = {0, 1}L(k). The counter
for both the encryption and decryption algorithm is initially set to 0.

2. To encrypt a message m ∈ Mk when the counter is ctr, the encryption algorithm
EPK outputs the ciphertext c = fs(ctr)⊕m, and increment its counter ctr.

3. In order to decrypt a ciphertext c, having counter ctr, the decryption algorithm D
compute m = fs(ctr)⊕ c, and increment the value of ctr.

In attacking this cryptosystem, the adversary Eve knows the PRF family F being used,
the security parameter k and the current value of the counter (since she can easily keep
track of all the ciphertexts Alice has sent to Bob.) Nevertheless, all that she knows can be
expressed as the knowledge of polynomially many pairs of the form (r′, fs(r

′)⊕m′) and this
does not help her to gain any advantage in guessing m from its encryption fs(ctr)⊕m.

It is possible to give a formal proof of the above claim using a standard reductionist
argument; however, we prefer to use the higher level technique introduced in previous
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section, both to demonstrate the use of such technique and because the argument becomes
simpler.
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Theorem 1 The CTR scheme defined above is an IND-CPA-secure SKE.

Proof: The CTR scheme is clearly an SKE since both the encryption and the decryp-
tion algorithm can be efficiently computed (notice that fs is poly-time computable by the
definition of PRF family), and the correctness property is trivially fulfilled.

Following the steps suggested in the previous subsection, we argue about the security of
this scheme in the Random Function Model. Since the adversary does not know the seed s
used in the pseudo random function fs, it is legitimate to replace this function with a truly
random function F within the Encryption and the Decryption algorithms:

EF (m) :
set: c← F (ctr)⊕m, ctr← ctr + 1
output: c

DF (c) :
set: m← F (ctr)⊕ c, ctr← ctr + 1
output: m

In the chosen plaintext attack, Eve, after having queried her encryption oracle a number
of times, chooses a pair of messages m0 and m1 whose encryptions she believes to be able
to distinguish from each other. Once challenged with the encryption c = F (ctr)⊕mb, for
a random b ∈ {0, 1}, she can make polynomially more queries to the oracle, and then she
has to decide which message was encrypted. How likely is she to succeed? We claim that
her probability of success is exactly 1/2.

To see why, notice that we are working in the Random Function Model, and thus the
value F (ctr) is completely random and independent from the values F (0), . . . , F (ctr− 1)
computed so far, and possibly known to Eve. Moreover, it is independent from all values
used in subsequent queries made by Eve to her oracle, since the counter consists of ℓ(k) bits,
and so it would take 2ℓ(k) queries for the counter to overflow and take again the same value.
From the non-triviality condition for PRF families, this is more than polynomial, and thus
Eve does not have enough time to wait until this happens. It follows that each time she ask
the oracle to encrypt a message, she will get back a ciphertext c = F (ctr′) ⊕m′ which is
a completely random quantity (thanks to the randomness of F (ctr′)), and thus she cannot
learn anything from it. Therefore, the best she can do to guess the bit b is flipping a coin,
and hence the CTR scheme is IND-CPA-secure in the Random Function Model.

From the pseudorandomness of the family F we can now conclude that the original CTR

scheme is IND-CPA-secure, since otherwise Eve would have a different behavior whether
accessing the oracle fs or the random oracle F , contradicting the assumption that F is a
family if PRFs.

Remark 1 Notice that the advantage of Eve in the Random Function Model is exactly 1/2,
since although she has access to an oracle, she cannot learn anything from its responses, so
that she cannot do anything better then guessing a bit at random. When we go from the
Random Function Model back to the “real world”, Eve gains at most the same negligible
advantage possible in distinguish between the “two worlds”, which is known to be at most
negligible from the pseudorandomness of the family F .
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1.4 Construction of a stateless IND-CPA-secure SKE

Once we have seen the CTR scheme, it is easy to modify it so that no state is required
neither for encryption nor for decryption. Indeed, in the CTR SKE each ciphertext has
the form F (ctr) ⊕ m, and the legitimate recipient (Bob) is able to decrypt it because it
maintains his state in sync with Alice’s state. What if the synchronization is lost? The
two parties can simply exchange their own states, since this would be of no help for the
attacker.

But therefore, why do we need synchronization? Alice and Bob can simply exchange
their states each time, or, even better, they can avoid keeping state at all, by having the
encryption algorithm choose a new, fresh random value to be used as the “state” for the
encryption at hand, and send it along with the “real” ciphertext to Bob. This leads to the
definition of the XOR scheme, included below.

1. On input 1k, the key-generation algorithm G chooses a family F of PRFs, and sets
the public key PK to be the description of that particular family (for example, in the
case of the NR construction, this consists of the choice of the strong prime p = 2q +1
along with a generator g of QRp.) Afterwards, G takes a random seed s ∈ {0, 1}k and
sets SK = s. Finally, G outputs (PK, SK, Mk), where Mk = {0, 1}L(k).

2. To encrypt a message m ∈Mk, the encryption algorithm EPK chooses a random value
r ∈ {0, 1}k, compute c = fs(r)⊕m and outputs the ciphertext c′ = 〈r, c〉.

3. In order to decrypt a ciphertext c′ = 〈r, c〉, the decryption algorithm D computes the
“pad” fs(r) and then the message m = fs(r)⊕ c.

Theorem 2 The XOR scheme defined above is an IND-CPA-secure SKE.

Proof: The XOR scheme is clearly an SKE since both the encryption and the decryption
algorithm can be efficiently computed; in addition, since the value used to generate the pad
is sent to the intended recipient of the message, the correctness property is also satisfied.

More interesting is the discussion of security: again, we consider the resilience of the
XOR scheme from a chosen plaintext attack, in the Random Function Model. Since the
adversary does not know the seed s used in the pseudo random function fs, it is legitimate
to replace this function with a truly random function F within the Encryption and the
Decryption algorithms, obtaining:

EF (m) :
set: r ←R {0, 1}ℓ(k), c← F (r)⊕m
output: c′ = 〈r, c〉

DF (c) :
set: m← F (r)⊕ c
output: m

Suppose that Eve has queried the encryption oracle a total of q = q(k) times. Let
r1 . . . rq be the random values chosen by the encryption oracle. And let r be the random
value used to encrypt the challenge ciphertext 〈r, F (r) ⊕mb〉, where bit b is random. It is
clear the only way the attacker gets any information about the bit b is if the “challenge”
value r belongs to the encryption oracle choices {r1 . . . rq}. But since r is random, this
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probability is at most q/2ℓ, which is negligible. Therefore, in the Random Function Model
the probability of success is at most 1/2 + q/2ℓ = 1/2 + negl(k). Hence the XOR scheme is
IND-CPA-secure in the Random Function Model; from the pseudorandomness of the family
F used in actual XOR construction, we can finally conclude that the original XOR scheme
is IND-CPA-secure.

Remark 2 It is worth pointing out that in th case of the XOR scheme Eve has an advantage
slightly better than guessing even in the Random Function Model. Although this make no
difference in an asymptotic sense (since her advantage is anyway negligible), in practice this
can be an issue, since it may leads to the necessity of using bigger values for the security
parameter k, thus worsening, in the long run, the efficiency performance of the system.

This consideration shows that there is no simple answer to the third question we asked
about SKE schemes; namely whether it is better to have stateful or randomized encryption
schemes. Both the two approaches have their pro’s and con’s: the CTR scheme is a little
bit inconvenient due to the necessity of maintaining a state, while the XOR scheme, albeit
stateless, may look unsatisfactory in terms of exact security, and also because the length of
the ciphertext is clisghly shorter (because it has to include the value r).

1.5 Encrypting Long Messages

As we will see shortly, “practical” PRFs typically have fixed input and outputr size, often
roughly equal to the security parameter k (say, both being 128 bits). How can we use such
PRFs to encrypt arbitrarily long messages? There are several ways out.

First, we notice that the CTR and XOR scheme only require long outputs size to support
long messages. And we already mentioned that we can expand the output by a factor 2a

by “wasting” a input bits. Thus, to encrypt 1 Gigabyte ≈ 230 file using L = ℓ = 128 = 27

one can create a new PRF with input size 128− (30− 7) = 103 and output size 230. Indeed,
we will later study this scheme (under a different, but equivalent definition) which will be
called “CTR mode of operation”.

However, we will see that there are several other popular and effective ways to go about
supporting long messages from “fixed length” PRFs. Historically, however, these methods,
which will be called modes of operation originated from a stronger cryptographic primitive
called a block cipher, or a pseudorandom permutation (PRP).1 As it turned out, some of
these modes of operations, like the counter mode, indeed work even better using regular
PRFs. Others, like the “CBC mode” that we study shortly actually require the stronger
structure of PRPs. Therefore, we make a brief detour and study PRPs, and then come back
to various modes of operations used to encrypt long messages.

2 Pseudo Random Permutation Family

The concept of Pseudo Random Permutations (PRPs) is motivated by the desire to create
a length-preserving encryption, so that we do not have to transmit a lot of additional bits
for each bit of data that we encrypt. By now we know that such an encryption cannot be

1Usually, the term “block cipher” is used to describe a “fixed length PRP”.
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semantically secure, but the introduction of PRPs happens to be nevertheless useful both
from practical and theoretical perspectives. We now make several definitions.

2.1 Definitions

We start with the following definition of a PRP:

Definition 1 [Pseudo Random Permutation Family] A family G = 〈gs : {0, 1}ℓ(k) →
{0, 1}ℓ(k) | s ∈ {0, 1}k〉k∈N is called a family of Pseudo Random Permutations if the following
properties hold:

1. gs is a permutation, ∀s.

2. gs and g−1
s are both efficiently computable, ∀s.

3. gs is pseudo random: ∀ PPT Adv

∣

∣Pr[ Advgs(1k) = 1 | s←R {0, 1}k ]− Pr[ AdvP (1k) = 1 | P ←R P(ℓ(k)) ]
∣

∣ ≤ negl(k)

where P represents a random permutation on ℓ(k) bits, chosen from the set of all such
permutations P(ℓ(k)).

♦

This definition is very similar to the definition of PRF from the previous lecture, and it
would be a good idea to look back and compare. Again, when we state that gs is pseudo
random, we mean that if Adv is given oracle access to gs (in particular, he does not know
s) he cannot tell it apart from access to a “fake” oracle P which represents a truly random
permutation. Using indistinguishability notation:

∀ PPT Adv Advgs ≈ AdvP

Again, be sure to refresh your memory of PRFs from the definition in the previous lecture
notes, and compare it with our definition of a PRP.

A stronger, and often required form of PRP is that of a strong PRP.

Definition 2 [Strong PRP] A Strong PRP satisfies all the properties of a family of Pseudo
Random Permutations, except the constraint [3.] is replaced by a stronger requirement
below:

3’. gs is pseudo random even if oracle access to g−1
s is provided as well: for any PPT Adv,

Adv(gs, g−1
s ) ≈ Adv(P, P−1)

♦

This new definition provides us with an additional measure of security by allowing us
to give Adv oracle access to g−1

s .
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2.2 Encryption from PRP’s?

To partially motivate previous definitions, let us propose a naive “encryption” scheme that
is length preserving: given a secret key s and a message m,

c = Es(m) = gs(m) m = Ds(c) = g−1
s (c)

If we let gs be taken from a family of Efficient PRPs, the scheme works, since c can be
decrypted it PPT. Also, since Es is a permutation, this encryption is length preserving, and
we need not transmit any excess data as part of the ciphertext. However, there is a serious
security flaw in the scheme: the adversary can tell if we send the same message twice, since
the encryption is deterministic. Hence, the scheme is certainly not CPA-secure (even though
it is obviously one-time, but this is uninteresting). Intuitively, though, the only thing that
the adversary can learn from seeing several encryptions is which encryptions correspond
to the same message. This is clearly the best we can hope for with length-preserving
encryption: namely such encryption must look like a random permutation! However, can
we build an efficient CPA-secure system from a PRP family?

As we will see, the answer is “yes”. In fact, there are several ways to do it. However,
we will examine these later, and start by relating PRFs and PRPs.

3 PRF⇐⇒ PRP

It turns out that any valid PRG is also a PRF, so if we wish to construct a PRF from a PRP,
don’t really have to do any work at all.

Theorem 3 (PRP ⇒ PRF) Assume G is a PRP family. Then G is also a PRF family.

Before turning to the proof of this statement, we need a result from Elementary Prob-
ability Theory, called the Birthday Paradox.

Lemma 1 (Birthday Paradox)
Choosing at random q values from a set of N ≫ q possible values, the probability of taking

twice the same value is approximately q2

2N
.

Proof: We have

Pr[“at least one repetition choosing q times an element out of N”] ≤

≤
∑

1≤i<j≤q

Pr[“item i collides with item j”] =

(

q

2

)

·
1

N
=

q(q − 1)

2N
≤

q2

2N

Now we can prove Theorem 3.

Proof: The proof uses the hybrid arguement. If we start by considering that members
of G are indistinguishable from random permutations to the adversary Adv, all we need
to show is that a random permutation is indistinguishable from a random function. In
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other words, we must show AdvP ≈ AdvF , where P is a random permutation oracle and
F is a random function oracle. However, the only way the adversary can tell something
is a random function and not a random permutation is if a collision occurs: namely, Adv

gets the same output for two different inputs. But the Birthday Paradox discussed above
tells us that the probability of such a collision is negligible as long as Adv can only make
polynomially many calls to its oracle (which is true since Adv is PPT). Therefore, random
permutations are indistinguishable from random functions, completing the proof.

Next, we need to show the more difficult construction, PRPs from PRFs. In order to do
this, we will take a brief detour to define something known as a Feistel Network.

3.1 Feistel Networks

The Feistel Network is a way of constructing an efficient, invertible permutation which can
be neatly structured in “rounds”. Feistel Networks generally consist of multiple rounds of
a Feistel transformation, which we now define.

Definition 3 [Feistel Transform] Let f : {0, 1}k → {0, 1}k be any efficient function. The
Feistel Transform of f is a permutation Hf : {0, 1}2k → {0, 1}2k, given by: (below L and
R are of length k each)

Hf (L, R) = (R, f(R)⊕ L)

We sometimes write Hf (L, R) = (L′, R′) with L′ = R and R′ = f(R) ⊕ L as a shorthand.
♦

In the following, we will always use f which is a (pseudo)random function. In this case,
the permutation Hf essentially takes two inputs of k bits, and outputs the right input in
the clear (but on the left hand side of the output) and then uses the given function f of the
right input to “encrypt” the left input (the result of the encryption is on the right side of
the output). Indeed, (R, f(R) ⊕ L) could be viewed as encryption of L when R is chosen
at random and f is a shared PRF. To summarize, the right side is somehow “mangled” and
used to encrypt the left side, and then the two halves are swapped.

Remark 3 The Feistel Transform is indeed a permutation (even though f need not be!), as
can be seen by choosing a fixed R first. It can be seen that the output L′ = R is the identity
permutation of the right input R, and the output R′ = f(R)⊕L for a fixed R has become a
permutation of the input L. Thus there is a unique output pair (L′, R′) for each input pair
(L, R). More specifically, its inverse is given by:

H−1
f (L′, R′) = (f(L′)⊕R′, L′)

This computation is strikingly similar to the original Feistel Transform, and in fact it is a
“mirror image” of the Feistel Transform.

Here are graphical representations for the definition of the Feistel transform and its
inverse:

These picture suggest the possibility of “stacking” one Feistel Transform on top of an-
other. In fact, the Feistel transform was originally designed to be efficient (computationally)
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Figure 1: The Feistel Transform and Inverse Feistel Transform

when used in “multiple rounds”, and this is where the power of the Feistel transform lies. Re-
peated applications of the Feistel transform constitute what is known as a Feistel Network.
To visualize a Feistel Network, and the corresponding Inverse Feistel Network, one need
only stack copies of the above drawings so that the outputs of one stage become the inputs
to the next. There is one very important point that must be made: even though one can use
the same f from round to round, we will see that we should use different (pseudo)random
f ’s in different rounds. Of course, in this case to invert the Feistel Network, it is important
to reverse the ordering of f ’s as well.

Definition 4 [Feistel Network] Given f1 . . . fn, the corresponding Feistel Network, H(f1,f2,...,fn),
is given by:

H(f1,f2,...,fn) = Hfn
(Hfn−1

(. . . (Hf1
(L, R)) . . .))

The operation performed by the Feistel Network is invertible, and the inverse may be
obtained by the following (Inverse Feistel Network):

H−1
(f1,f2,...,fn) = H−1

f1
(. . . (H−1

fn−1
(H−1

fn
(L′, R′)) . . .)

♦

These Feistel Networks are used heavily in real world cryptographic schemes (perhaps
most notably, the Data Encryption Standard (DES)). It is difficult to prove anything about
these Feistel Networks in their most general form, however, and the construction of many
cryptographic schemes that use Feistel Networks is considered a “black art”, since no one
can really directly prove that it works. However, we can prove some formal results, by
assuming that the functions fi used in the Feistel Network are independently drawn from
a family F of PRFs! We now define a notation for such PRF Feistel Networks.

Definition 5 [PRF Feistel Network] Let F be a PRF family whose functions map k bits to
k bits (i.e. ℓ(k) = L(k) = k). Let

Hn
F = {H(f1,f2,...,fn) | f1, f2, . . . , fn ∈ F}
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We denote by Hn
F a random member of Hn

F , i.e. H(f1,f2,...,fn), where f1, f2, . . . , fn are
random independently chosen members of F . That is, each round of the Feistel Transform
uses a different, randomly chosen member of F . ♦

Now that we have these definitions in hand, we can proceed to produce PRPs from
PRFs by something known as the Luby-Rackoff Construction, which makes use of these
PRF Feistel Networks.

3.2 The Luby-Rackoff Construction

Theorem 4 (PRF ⇒ (Efficient) PRP) Let F be a PRF family whose functions map k bits
to k bits (i.e. ℓ(k) = L(k) = k). Then G = H3

F is an efficient PRP family. Namely, 3
rounds of the Feistel Network yield an efficient PRP.

Proof: The proof is by hybrid arguement over a sequence of worlds, informally shown in
the table below. The goal is to start with a World 0 in which we have only a PRF, and
through a sequence of intermediate worlds that are each indistinguishable from the previous
world, construct a World 5 that is just the desire random permutation on 2k bits.

World 0 1 2 3 4 5

Input (L, R) (L, R) (L, R) (L, R) (L, R) (L, R)

f1, f2, f3 ∈ F f1, f2, f3 are
truly random Hf1

(L, R) Hf1
(L, R) Hf1

(L, R)
≀≀ ↓ ↓

Inside (R, ?̃) Hf2
(R, ?̃) Hf2

(R, ?̃)
≀≀ ↓

(?̃, $) Hf3
(?̃, $) P – random
≀≀ permutation

Output Hf1,f2,f3
(L, R) Hf1,f2,f3

(L, R) Hf2,f3
(R, ?̃) Hf3

(?̃, $) ($, $) P (L, R)

Figure 2: Illustration of Luby-Rackoff Proof

The following informal, but informative, notation is used in the table. Do not worry
if it is confusing for now. (L, R) is used to represent a pair of inputs that are selected by
the adversary Adv as the input to the oracle that he has. Clearly, many such pairs will
be selected during the course of execution (wlog, we assume all the oracle calls are made
with distinct inputs (L, R)). We use ? to represent some string is in under direct or indirect
control of the adversary (in particular, the adversary might know part or all of it). We
use ?̃ to denote a value ? which is always distinct from one oracle call to another. Namely,
the adversary has partial knowledge or control over selecting this value, but w.h.p. the
adversary cannot cause a collision among different such values. Finally, we use $ to denote
a truly random k-bit string. Namely, from one oracle call to the other, this string is selected
randomly and independently from previous calls.

As the first step, we look at the “real” World 0, where the oracle is Hf1,f2,f3
, where

f1, f2, f3 are PRF’s. Recall from the previous lecture the discussion of “The Random Func-
tion Model”. Using this model, we know that World 0 is indistinguishable from World 1,
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where f1, f2, f3 are truly random functions (technically, we have to use three hybrid ar-
guments eliminating one fi every time, but this is simple). Jumping ahead, World 4 will
be a truly random function from 2k to 2k bits. By Theorem 3, we knows that a truly
random function is indistinguishable from a truly random permutation, i.e. World 4 is
indistinguishable from World 5.

To summarize, the heart of the proof is to show that World 1 is indistinguishable from
World 4: namely, H(f1,f2,f3), where f1, f2, f3 are random functions, is indistinguishable from
a truly random function from 2k to 2k bits. Here is the intuition. We want to say that
as the input (L, R) travels through 3 layers of the Feistel network, the following changes
happen:

(L, R)
Hf1−→ (L1, R1) = (R, ?̃)

Hf2−→ (L2, R2) = (?̃, $)
Hf3−→ (L3, R3) = ($, $)

Thus, the first layer only achieves that the right half R1 never repeats from one oracle call
to the other, but Adv may know a lot about both the left and the right parts. The second
layer uses this to produce a string whose right half R2 always looks random and independent
from everything else, while the left half L2 = R1 may still be very predictable. Finally, the
third layer uses the the randomness and unpredictability of R2 to make both L3 = R2 and
R3 look totally random, as desired.

We now formalize the above intuition. World 2 is the same as World 1 with the following
exception. If any two right halves R1 happens to collide during the oracle calls, we stop the
execution and tell Adv that a right-half collision happened. Thus, to show that Adv does
not see the difference between World 1 and World 2, we must argue that the probability of
collision is negligible. Assume Adv makes t calls to the its oracle. Take any two such calls
with inputs (L, R) 6= (L′, R′). If R = R′, we must have L 6= L′, and hence

R1 = L⊕ f1(R) = L⊕ f1(R
′) 6= L′ ⊕ f1(R

′) = R′
1

i.e. the right half collision cannot happen then. On the other hand, assume R 6= R′. In order
for R1 = R′

1, we must have L⊕ L′ = f1(R)⊕ f1(R
′). Irrespective of the value Zℓ = L⊕ L′,

since f1 is a truly random function and R 6= R′, Zr = f1(R) ⊕ f1(R
′) is a truly random

string, so the probability that Zℓ = Zr is 1/2k. Hence, in both cases, the probability that
R1 = R′

1 is at most 1/2k. Since there are t2 pairs of inputs, the probability that any two
of them will yield a collision in the right half is at most t2/2k, which is negligible (since t is
polynomial). To summarize, World 1 and World 2 are indeed indistinguishable.

We now go one more level down. World 3 is the same as level 2, except the value R2,
instead of being equal to f2(R1) ⊕ L1, is always chosen random. However, this does not
change the experiment at all: namely, World 2 and World 3 are the same. Indeed, since
World 2 only runs when no two values R1 are the same, all t inputs to f2 are distinct. And
since f2 is a truly random function, all the values f2(R1) are random and independent from
each other. But, then irrespective of which values of L1 are used, all R2 = L1 ⊕ f2(R1) are
random and independent as well.

Next, we go to World 4. It is the same as world 3 up to the last round of the Feistel.
There, it sets L3 = R2, as it should, but selects a truly random R3 instead of expected
f3(R2) ⊕ L2. First, since R2 was completely random in World 3, L3 = R2 is completely
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random as well. Next, by birthday paradox analysis, the probability that any two values
R2 (which are randomly selected) collide, is at most t2/2k, which is negligible. Thus, with
overwhelming probability all the values R2 are distinct. But then, since f3 is a random
function, by similar argument to the previous paragraph we get that all the values f3(R2)
are random and independent, and thus, so are R3 = f2(R2) ⊕ L2. To summarize, with all
but negligible probability World 3 and World 4 are the same as well.

Finally, notice that World 4 is a truly random function provided no right half collision
happens on the first layer (in which case we stop the experiment). But the latter has
negligible chance as we know, so World 4 is indeed indistinguishable from a random function.
This completes the proof.

We conclude our discussion with another useful theorem, which will not be proven here.

Theorem 5 (PRF⇒ Strong PRP) Let F be a PRF family whose functions map k bits to
k bits (i.e. ℓ(k) = L(k) = k). Then G = H4

F is an efficient strong PRP family. Namely, 4
rounds of the Feistel Network yield an efficient strong PRP.

4 Using PRP’s for Secret-Key Encryption

4.1 Several Schemes Using PRP’s

In these section we propose several schemes (called ciphers) using PRP’s. In all of them, let
G = {gs} be an efficient PRP family operating on the appropriate input length. The seed s
will always be part of the shared secret key.

Electronic Code Book (ECB) Cipher. This is the naive suggestion we started from:

c = Es(m) = gs(m); m = Ds(c) = g−1
s (m)

We noted that ECB cipher is length-preserving and very efficient. However, it is obviously
not CPA-secure, since the encryption of a message is completely deterministic (e.g. the
adversary can tell if you send the same message twice). On the positive side, it is clearly
one-message secure.

Next, we examine two obvious schemes resulting when we treat our PRP family as a
PRF family (which is justified by Theorem 3).

Counter (CNT) Cipher. This is a stateful deterministic encryption. Players keep the
counter value cnt which they increment after every encryption/decryption.

c = Es(m) = gs(cnt)⊕m; m = Ds(c) = gs(cnt)⊕ c

The CPA-security of this scheme was shown when we talked about PRF’s.
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XOR (aka R-CNT) Cipher. This is a stateless probabilistic encryption.

(r, c)← Es(m) = (r, gs(r)⊕m); m = Ds(r, c) = gs(r)⊕ c

where r is chosen at random per each encryption. The CPA-security of this scheme was
shown when we talked about PRF’s.

Next, we give several ciphers which really use the inversion power of PRP’s. We start
with what we call “nonce” ciphers, but first make a useful digression. The term nonce means
something that should be unique (but possibly known to the adversary). For example, the
counter and XOR schemes above effectively used a nonce to encrypt m via c = gs(R)⊕m.
Indeed, to analyze the security of the above schemes, we only cared that all the R’s are
distinct. For the counter scheme we ensured it explicitly by using the state cnt, while for
the XOR scheme we selected R at random from a large enough domain, and argued the
uniqueness with very probability (using the birthday paradox analysis). Similarly, the nonce
ciphers below use nonce R as follows (◦ denotes a clearly marked concatenation):

c← Es(m) = gs(m ◦R); Ds(c) : get m ◦R = g−1
s (c), output m

Assuming all the nonces R are unique, the CPA-security of this “scheme” is easy. Depending
whether we generate nonces using counters+state or at random, we get:

C-Nonce Cipher. This is a stateful deterministic encryption. Players keep the counter
value cnt which they increment after every encryption/decryption.

c← Es(m) = gs(m ◦ cnt); Ds(c) : get m ◦ cnt = g−1
s (c), output m

R-Nonce Cipher. This is a stateless probabilistic encryption.

c← Es(m) = gs(m ◦ r); Ds(c) : get m ◦ r = g−1
s (c), output m

where r is chosen at random per each encryption.

Random IV (R-IV) Cipher. It operates as follows:

(r, c)← Es(m) = (r, gs(r ⊕m)); m = Ds(r, c) = g−1
s (c)⊕ r

where r is chosen at random per each encryption. r is sometime s called the “Initialization
Vector” (IV). Notice the similarity with the R-CNT cipher: R-CNT sets c = gs(r) ⊕ m,
while R-IV sets c = gs(r ⊕m). Not surprisingly, the proof for CPA-security of R-IV is also
very similar to R-CNT, with a slight extra trick.

Proof Sketch: Rather than arguing that all the r’s are distinct w.h.p., as we did for
R-CNT, we argue that all (r ⊕ m)’s are distinct w.h.p. Indeed, irrespective of how the
adversary chooses the message m to be encrypted, r is chosen at random, so (r ⊕ m) is
random and independent from everything else. Hence, by birthday paradox analysis w.h.p.
all (r⊕m)’s are distinct, so our PRP (modeled as a truly random function, not permutation,
for the analysis; see Theorem 3 for justification) operates on different inputs, so all the values
gs(r ⊕m) are random and independent from each other. Thus, in particular, w.h.p. the
challenge ciphertext is a random string independent from the bit b used to select m0 or m1

to be encrypted.
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Remark 4 Notice, R-IV scheme does not work with counters instead of random strings.
The corresponding insecure scheme C-IV would be the following (where cnt is incremented
after each encryption/decryption):

c← Es(m) = gs(cnt⊕m); m = Ds(c) = g−1
s (c)⊕ cnt

Looking at the analysis above, try to see what goes wrong!

4.2 Block Ciphers and Modes of Operation

In the above schemes we assumed that we can choose a PRP whose input length is roughly
the same as the length of the message. Hence, the longer is the message, the longer should
PRP’s input be. In practice, this is quite inconvenient. Instead, people usually design fixed
length ℓ PRP’s (say, ℓ = 128 bits), just long enough to avoid brute force attacks. Then to
encrypt a long message m, m is split in to blocks m1 . . .mn, each of block length ℓ, and the
PRP is somehow used to encrypt these n blocks. For this reason, efficient PRP’s with fixed
(but large enough) block length are called block ciphers. The block cipher itself is assumed
(or modeled) to be an efficient PRP. However, the main question is how to really use this
block cipher to “combine together” the n message blocks m1 . . .mn. Each specific such
method is called mode of operation. As we will see, there are many modes of operation for
block cipher — some secure and some not. The main goal of a “good” mode, aside from
being secure, is to minimize the number of extra blocks output. Usually, at most one extra
block/value is considered “efficient”, but there are many other important criteria as well.

We now go through the previous “single” block schemes, and see how they yield a
corresponding mode of operation.

Electronic Code Book (ECB) Mode. Simply apply the ECB cipher block by block:
ci = gs(mi), for all i. Decryption is obvious. This mode is extremely efficient, length-
preserving, but totally insecure.

Counter (C-CTR) Mode. Simply apply the C-CTR cipher viewing m1 . . .mn as “sep-
arate messages”. Since C-CTR is CPA-secure, we know that the resulting scheme is CPA-
secure as well: ci = gs(cnt + i − 1) ⊕ mi. At the end, update ctr = ctr + n. Here and
everywhere, the addition is modulo 2ℓ. Notice, the encryption is length-preserving, but
keeps state as the penalty. Decryption is obvious. Notice, this works (even better) with
PRF’s, and not only PRP’s. Also, the scheme is parallelizable both for encryption and for
decryption.

The next three modes are motivated by the XOR (or R-CTR) cipher. Recall, it returns
(r, gs(r)⊕m). A straightforward way to iterate this cipher is to choose a brand new ri for
every block mi. However, this requires to send all the ri’s, which doubles the length of the
ciphertext.

Random Counter (R-CTR) Mode. This modes “combines” the idea of C-CTR and
R-CTR modes. As a result, it avoids state, but yields only one “extra block”. Encryption
picks a random r for every message, and sets ci = gs(r+i−1)⊕mi. It outputs (r, c1, . . . , cn),
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Decryption is obvious: mi = gs(r + i− 1)⊕ ci. A similar analysis to R-CTR cipher shows
that with high probability, all n-tuples (r, r+1, . . . , r+n−1) do not overlap, so no collision
occurs. Notice, this works (even better) with PRF’s, and not only PRP’s. Also, the scheme
is parallelizable both for encryption and for decryption.

Cipher Feedback (CFB) Mode. This mode uses a different idea to get “fresh” ran-
domness. After selecting an initial IV r, it sets c1 = gs(r) ⊕m1, and then uses c1 itself as
the next r! Namely, c2 = gs(c1)⊕m2. Intuitively, since gs looks like a random function (by
Theorem 3), c1 indeed “looks random” and independent from the original r, so we can use
it to encrypt m2. And so on. To summarize, set c0 = r and ci = gs(ci−1)⊕mi and output
(c0, c1 . . . cn). To decrypt, recover mi = gs(ci−1)⊕ ci. Notice, this works (even better) with
PRF’s, and not only PRP’s. Also, the scheme is parallelizable for decryption, but not for
encryption.

?
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?
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?
c2

?
c3

gs n-
?

m1

gs n-
?
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gs n-
?

m3

- - -IV

Figure 3: Cipher Feedback Mode

Output-Feedback (OFB) Mode. This mode also uses the block cipher itself to refresh
randomness. Specifically, it picks a random IV r, and sets r0 = c0 = r. then, for each i, is
sets “one-time pad” ri = gs(ri−1) and computes ci = ri⊕mi = gs(ri−1)⊕mi (the latter could
also be viewed as the XOR cipher using ri−1 as the IV). It outputs (c0, c1 . . . cn). To decrypt,
compute the ri’s from r0 = c0 (via ri = gs(ri−1)) and output mi = ci⊕ri = ci⊕gs(ri−1). In
other words, the initial IV r defines a sequence of “independently looking” one-time pads:
r1 = gs(r), r2 = gs(gs(r)), and so on: each ri is used to encrypt mi. Notice, this works
(even better) with PRF’s, and not only PRP’s. Also, the scheme is not parallelizable for
either encryption, or decryption.

Nonce Modes. Those could be defined, both for the counter C-Nonce and the random
R-Nonce versions, but are never used. The reason is that the overall size of encryption is by
a constant fraction (rather than by one block length) larger than the length of the message,
since a nonce should be used for each block. Notice, btw, all nonces have to be distinct.

Cipher Block Chaining (CBC) Mode. Finally, we define the last mode originating
from the R-IV cipher. It is the only one so far that uses the inversion power of block
ciphers. Recall, R-IV returns (r, c), where c = gs(r ⊕m). A straightforward way to iterate
this scheme is to use a different ri for each mi (check why one r does not suffice!). Again,
this would double the length of the encryption. Similarly to the CFB mode above, the
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CBC mode uses the previous cipher blocks themselves as the new ri’s, but uses those in
R-IV rather than R-CTR! Specifically, as before it picks a random IV c0 = r, and sets
c1 = gs(c0 ⊕m1). Then, it simply uses c1 as the next IV: c2 = gs(c1 ⊕mi). Then it uses
c2 as the next IV, and so on. To summarize, set c0 = r, ci = gs(ci−1 ⊕ mi) and output
(c0, c1 . . . cn). To decrypt, recover mi = g−1

s (ci)⊕ ci−1. Notice, the scheme is parallelizable
for decryption, but not for encryption.
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Figure 5: Cipher Block Chaining Mode

To summarize, C-CTR, R-CTR, CFB, OFB, CBC modes are all CPA-secure. For mys-
terious reason, CBC seems to be the most pervasively used mode in practice, despite being
one of the lesser simple and secure of the above.

Remark 5 One can also define stateful variants of CFB, OFB and CBC modes, denoted
C-CFB, C-OFB and C-CBC, where the initialization vector IV is set to be a counter instead
of being chosen fresh for each encryption. It turns out that the modes C-CFB and C-OFB
are still CPA-secure, which C-CBC is not! Think why this is the case (also read the next
section).
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Last time we defined several modes of operation for encryption. Today we prove their
security, and then spend the rest of the lecture studying the problem of message authenti-
cation. We will see that the problem is very different from encryption, although some tool,
such as PRFs, come up pretty handy!

1 Security of CBC, CFB and OFB Modes

The CPA-security of the CFB, OFB and CBC modes is shown by very similar technique.
In fact, one “universal proof” suffices. We give a proof sketch here.

First, as usual, the block cipher (i.e., our PRP) gs is replaced by a truly random function
F (this was justified last time) by first replacing it by a random permutation, and then
replacing the latter by a random function). Now, take any adversary Adv. Rather than
choosing the whole random function F right away for the experiment with Adv, we select it
“as needed” as we move along. Namely, we keep the table of (input, output) pairs that were
used so far. When a new input x to F arrives, we use the table if the input was used before,
and otherwise add (x, random) to the table, and use random as the output of F . It is easy
to see from the description of the CFB, OFB and CBC modes, that as long as we never
perform the table look-up, i.e. no input is repeated twice during the run, the advantage of
Adv is 0. Namely, all Adv sees is a bunch of random strings, independent from anything
else.

Thus, it suffices to show that the probability an “input collision” happens is negligible.
Let Bj denote the (“bad”) event that the input collision happened within first j evaluations
of F . We want to show that Pr(BT ) = negl(k), where T is the total number of calls to F
(roughly T = nt, where t is the number of encryption queries made by Adv and n is the
number of blocks per message). We will show by induction on j that

Pr(Bj) ≤
(j − 1)T

2ℓ

Indeed, Pr(B1) = 0. Now, in order for Bj to happen, either there should be a collision
among the first (j−1) calls to F (i.e., Bj−1 should happen), or the j-th input to F collided
with one of the previous (j − 1) inputs. Formally,

Pr(Bj) ≤ Pr(Bj−1) + Pr(Bj | Bj−1)

Notice, by inductive assumption the first probability is at most (j − 2)T/2ℓ. On the other
hand, from the facts that (1) Bj−1 means that the previous (j − 1)-st input was distinct
from all the earlier inputs; (2) F is the random function, which combined with (1) gives
that (j − 1)-st output is truly random; and (3) the description of OFB/CFB/CBC modes
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together with (1) and (2) implies that the j-th input is totally random, we conclude that
the probability that random j-th input to F collides with the previous (j − 1) inputs is at
most j−1

2ℓ ≤
T
2ℓ . Combining these,

Pr(Bj) ≤
(j − 2)T

2ℓ
+
T

2ℓ
=

(j − 1)T

2ℓ

But now we see that Pr(BT ) ≤ T 2/2ℓ, which is indeed negligible since T is polynomial.
Namely, w.h.p. no input collisions happen, and all the adversary simply sees is a bunch of
truly random strings, giving him no way to predict the challenge b.

Remark 1 Notice, how more subtle the proof becomes for these modes. In some sense,
it is surprising that much simpler C-CTR and R-CTR modes are not used more often:
unlike OFB,CFB and CBC modes, they are easily parallelizable for both encryption and
decryption; unlike the CBC mode they work with a PRF and not only a PRP; finally, they
give comparable (or even better in case of C-CTR) security guarantees.

2 Secret-Key Encryption in Practice

In practice, specific efficient block and stream ciphers are used. These practical schemes
usually follow some high level guidelines we saw in our formal study. However, the design of
block and stream ciphers is usually viewed as “black art”. We name a few such ciphers used
in practice, and refer you to outside sources to learn more about those (i.e., see “Applied
Cryptography” by Bruce Schneier).

• Stream ciphers: RC4, SEAL, WAKE, A5, Hughes XPD/KPD, and many-many others.

• Block Ciphers: DES, AES (Rijndael), Lucifer, FEAL, IDEA, RC2, RC6, Blowfish,
Serpent, and many-many-many-many others.

We notice that block ciphers are used much more commonly. Most of them (with a
notable exception of AES) use Feistel Network as part of their design, so Feistel transform
is very useful. The current standard is AES — advanced encryption standard, which recently
replaced DES — old data encryption standard. Also, using any stream cipher, or a block
cipher with a good mode of operation, the size of the ciphertext is (almost) equal to the
size of the plaintext, which is very efficient.

3 Public-Key Encryption in Practice

In general, secret-key (or symmetric) encryption is very efficient (even the theoretical ones
we constructed using PRGs). On the contrary, public-key (or asymmetric) encryption is
much less efficient, especially for large messages (aside from efficiency issues, the size of the
ciphertext is usually much larger than the plaintext as well). On the other hand, a major
drawback to symmetric key schemes is that they require that you share a secret with the
intended recipient of your communication. On the contrary, public key encryption does not
require you to share any secret knowledge with the recipient.
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So can we have a relatively efficient public-key encryption, especially for long messages?
The answer is “yes”. And the technique is to combine the “slow” ordinary public-key
encryption E′ with the fast secret-key encryption Enc. This folklore technique is known as
integration of public- and secret-key schemes. If auxiliary E′ has public key PK and secret
key SK, we define new public-key encryption E, which has the same public/secret keys, as
follows:

EPK(m) = (E′
PK(s),Encs(m)), where s←R {0, 1}

k

DSK(c1, c2) : get s = D′
SK(c1); output m = Decs(c2)

That is, we encrypt a short, randomly chosen secret using s a public key scheme, and then
transmit a stream or block cipher encryption of the message using the random secret. The
recipient first decrypts the random secret, then uses that to decrypt the message. Provided
that E′

PK and Enc are CPA-secure, the new scheme is also CPA-secure (in fact, one-message
security suffices for the symmetric scheme Enc). The proof is left as an exercise.

In fact, this method can be generalized to any key encapsulation scheme capable of
encapsulating a key s long enough to perform symmetric encryption of long messages.
If 〈ψ, s〉 is the output of the key encapsulation algortihm, simply set the ciphertext to
c = 〈ψ,Encs(m)〉. When decrypting c, use key decapsulation to recover s from ψ, and then
use s to recover m.

4 Introduction to Authentication

The rest of the lecture we will be dedicated to the problem of message authentication.
First, we define the problem of message authentication and show how it is different from
the problem of encryption. Then we define the notion of message authentication schemes,
and the sub-case of those — message authentication codes (MAC). We will examine goals
and capabilities of the intruder and will define the strongest security notion for MACs. Then
we will see how MAC can be implemented using PRF (and the other way around). Then we
will examine the problem with long messages and two approaches solving it. The second
approach will lead us to the definition of a special family of universal hash functions, and
the usage of such family to enhance the efficiency of PRF and MAC for long inputs.

4.1 Motivation

While Encryption is a topic of cryptography that deals with privacy, Authentication is a
topic of cryptography that deals with trust. When a sender sends a message to a receiver,
how does a receiver know if it comes from appropriate sender? What if the intruder tries
to imitate a sender, or tampers with the real messages being sent, etc.? Is there a way for
the recipient to be “sure” that the message indeed came from the supposed sender, and was
not modified in the transit?

Similar to the encryption scenario, there are two approaches to solving this problem:
the secret-key and the public-key. In this lecture we start with the secret-key setting. In
this scenario, the sender and the recipient share a secret key s (not known to the attacker).
This key helps the sender to “tag” the message, so that the recipient (only) can verify the
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validity of the “tag”, but nobody can “forge” a valid tag. Thus, the goal is to establish
authenticated communication between a dedicated sender/receiver pair.

To summarize, we are trying to design the following “s-functionality”. Let’s say sender
is to send message m (in the clear, we are not solving encryption problem at the moment).
So, it calls up his s-functionality that put the message m into the “envelope” T . Then it
goes through open communication, accessible to intruders, so by the time it gets to the
receiver it could change from T to some T ′. Receiver receives this envelope T ′. He calls up
his s-functionality that validates whether envelope T ′ was stuffed by s-functionality on the
sender’s side. If it does, we can be “sure” that T ′ = T , receiver can extract m′ from T ′ as a
valid authenticated message, and in fact m′ = m. Otherwise receiver rejects T ′ as invalid.
Thus, the security of Authentication would imply inability by the intruder to produce a
valid T ′ (in other words to send to the receiver something it would accept), not produced
by the sender. The above is very close to a formal definition of a message authentication
scheme.

4.2 Message Authentication Schemes

The above discussion leads to the following general definition (below we only define the
syntax, and not the security). Below M is the corresponding message space, e.g. M =
{0, 1}ℓ.

Definition 1 [Message Authentication Scheme] Message Authentication Scheme is a triple
(Gen,Auth,Rec) of PPT algorithms:

a) The key generating algorithm Gen outputs the shared secret key: s← Gen(1k).

b) The message authentication algorithm Auth is used to produce a value (“envelop”)
T ← Auths(m), for any m ∈M. It could be deterministic, as we will see.

c) The deterministic message recovery algorithm Rec recovers the message from the en-
velope T : Recs(T ) = m̃ ∈M∪{⊥}, where ⊥ means that the message was improperly
authenticated.

The correctness property states that m̃ = m, i.e. ∀s,m, Recs(Auths(m)) = m. ♦

Let us for now assume our message authentication schemes are stateless. Later we can
examine stateful message authentication schemes as well.

Before moving any further (in particular, define the security of message authentication
schemes), let us compare (secret-key) encryption and authentication.

4.3 Authentication vs. Encryption

Just to see how different the problem of Authentication is from the problem of Encryption,
let’s see that Encryption is not solving (and is not intended to solve) authenticity at all.
Even the best encryption schema, one time pad for one message, was not addressing the
issue. Lets say intruder E knows format of the message where the sender says “please credit
100 dollars to E”, and say the one-time pad is used over ASCII alphabet. He can easily
“flip” the 1 for a 9 for example, by simply flipping several bits of the encrypted message
(in fact, the encryption will reveal the one-time pad, and E can encrypt anything he wants
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with it now). Similar attacks will apply to other encryption schemes we studied so far (e.g.,
counter scheme will have the same attack).

To summarize, encryption schemes are designed so that E cannot understand the con-
tents of the encryption, but might allow E to tamper with it, or insert bogus messages.
For example, in many encryption schemes every string is a legal encryption is some valid
message. In this case, E can send any “garbage” string, and the recipient will decrypt it
into a valid (albeit probably “useless”) message. This should not be possible in a “secure”
message authentication scheme.

Conversely, authentication be itself does not solve privacy. In fact, nothing prevents the
envelop to have the message m in the clear.1 To emphasize this point even further, for the
rest of this lecture we will talk about a special class of message authentication schemes,
called message authentication codes (MACs), which always contain the message in the clear.
As we will see, dealing with this special case is more intuitive, since it clearly illustrates our
goal of message authentication.

5 Message Authentication Codes (MAC)

5.1 Definition

As we said, MAC is a special case of message authentication schemes. It implies sending
message m in the clear along with a tag t. Namely, envelope T = (m, t), and the message
recovery only checks if the tag t is “valid”. Thus, the receiver’s goal is to validate message
m by verifying whether she/he can trust that tag t is a valid tag for m. In case of successful
validation receiver outputs “accept”, otherwise “reject”.

Definition 2 [Message Authentication Code] Message Authentication Code, MAC, is a
triple (Gen,Tag,Ver) of PPT algorithms:

a) The key generating algorithm Gen outputs the shared secret key: s← Gen(1k).

b) The tagging algorithm Tag is produces a tag t← Tags(m), for any m ∈ M. It could
be deterministic, as we will see.

c) The deterministic verification algorithm Ver produces a value Vers(m, t) ∈ {accept, reject}
indicating if t is a valid tag for m.

The correctness property states that m̃ = m, i.e. ∀s,m, Vers(m,Tags(m)) = accept. ♦

5.2 Security

The security as usual is measured by the probability of unauthorized PPT adversary A to
succeed. But what is the goal of A? The most ambitious goal is to recover secret key s.
Similar to the encryption scenario, this is too ambitious (e.g., part of s can be never used,
so it is not a big deal to prevent A from recovering s). A more reasonable goal is to come
up with the message-tag pair (m, t) such that Vers(m, t) = “accept”. Having that pair, A

1Later we will study the problem of authenticated encryption, which simultaneously provides privacy and
authenticity.
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can masquerade as a valid sender of m by simply sending (m, t) to the receiver. This attack
is called a forgery. There are two kinds of forgery: universal and existential. Universal
forgery implies that A can come up with trusted tag t for any message m that A wants.
Existential forgery implies that A can produce at least a single pair (m, t) that triggers Ver

to “accept”, even if the message m is “useless”. Existential forgery is the least ambitious
of these goals, so the strongest security definition would imply that no A can achieve even
this, easiest of the goals. Moreover, in many applications such (strong) security is indeed
needed.

Next, what can A do to try to achieve its goal? There are several options.

- The weakest attack mode is to give A no special capabilities. I.e., A cannot intrude
into communication between sender and receiver and has no oracle access to any of
MAC algorithms.

- A more reasonable assumption is that A has some access to communication between
sender and receiver, and can try to analyze valid message-tag pairs (m, t) that it
observes. Of course, once we allow this, we have to restrict A from outputting a
“forgery” (m, t) for the message m that it already observed.2 Taken to the extreme,
we can allow A observe valid tags for any message m that A wants. Namely, we can
give A oracle access to the tagging function Tags(·). This is called (adaptive) chosen
message attack (CMA).

- Finally, we can assume A has oracle access to the receiver, so that it can learn whether
any message-tag pair (m, t) is valid. Alternatively, we may think that A keeps sending
“fake” message/tag pairs, and wins the moment the recipient accepts such a pair.

Looking at the above, we now make the strongest definition of security, such that prevent A
from its easiest goal, existential forgery, but lets A use both the tagging and the verification
oracle.

Definition 3 [MAC’s Security] A MAC = (Gen,Tag,Ver) is “secure”, i.e. existentially
unforgeable against CMA, if ∀ PPT A, who outputs a “forgery” (m, t) such that m has
never been queried to oracle Tags(·),

Pr(Vers(m, t) = accept | s← Gen(1k), (m, t)← ATags(·),Vers(·)(1k)) ≤ negl(k)

♦

For completeness, we also give the corresponding (more general definition) for any mes-
sage authentication scheme (even though we will mainly work with MACs).

2A slightly stronger definition forbids A to output a pair (m, t) that it already observed. In other words,
A is allowed to forge a “new” tag t

′ for the message m whose tag t 6= t
′ it already observed. This notion

is called strong unforgeability. Luckily, most of our constructions will be strongly unforgeable. Moreover,
in most (but not all; see below) settings this strengthening is not that crucial. First, most MAC’s are

deterministic and have “canonical” verification t
?
= Tag

s
(m), in which case there is no difference between

the standard and strong unforgeability. Second, if m was legally sent and the receiver is “allowed” to accept
m again, it will do it with the “old” tag t as well, so there is no value to even change t to t

′ 6= t. Finally, in
many applications such “duplication” is anyway forbidden and is enforced by other means like time-stamps,
etc.
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Definition 4 [Security of Message Authentication Scheme] A message authentication scheme
(Gen,Auth,Rec) is “secure”, i.e. existentially unforgeable against CMA, if ∀ PPT A, who
outputs a “forgery” T such that Recs(T ) has never been queried to oracle Auths(·),

Pr(Recs(T ) 6=⊥ | s← Gen(1k), T ← AAuths(·),Recs(·)(1k)) ≤ negl(k)

♦

Remark 2

a) Usually, Gen just outputs a random string as a key. We will see examples of this later.

b) When Tag is deterministic and verification Ver is “canonical” (i.e. it simply checks

Tags(m)
?

= t), — which include the deterministic PRF-based MACs studied in the
next section, — oracle access to Vers(·) is not needed.3 Instead of calling Vers(m

′, t′),
A can call Tags(m

′) and compare its output with t′. And if A would like to check his
candidate forgery (m′, t′) before outputting it, and at most q such checks are made by
A, we can simply let A “pretend” that all the checks are false, and output at random
one of these q questions to Tag as its forgery. True, the success probability goes down
by a factor of q, but since q is polynomial in k, it still remains non-negligible if it
was non-negligible. More generally, that last argument extends to general message
authentication scheme: if Auth is deterministic and Rec is “canonical” (i.e., it also

checks T
?

= Auths(Recs(T ))), oracle access to Rec(·) is not needed (why?), even though
again we loose a large polynomial factor in the security.

5.3 MACs, Unpredictable Functions and PRFs

In this section we will build a secure MAC. In fact, we restrict our attention to deterministic
(stateless) MAC’s, whose keys (“seeds”) are random strings of some length. Hence and
without loss of generality, the verification algorithm Vers(m, t) simply checks if t = Tags(m),
so we do not need to explicitly specify it. Moreover, Tags(m) is now a deterministic function
indexed by the seed s. Thus, we can view such a MAC as a family of functions F =
{fs{0, 1}

ℓ → {0, 1}|tag|, s ← Gen(1|s|)}, where fs = Tags. For simplicity, let us assume
|s| = k. The chosen message attack (with no unnecessary oracle to Vers) corresponds to
oracle access to fs(·), for a random (unknown) s. The success corresponds to outputting
a correct pair (x, fs(x)), where x was not submitted to the fs(·) oracle, i.e. predicting the
value fs(x) for a “new” x. Not surprisingly, such, in some sense “canonical”, MAC is called
an unpredictable function. More formally, the family F is called an unpredictable family of
for any PPT A,

Pr(fs(x) = y | s← {0, 1}k, (x, y)← Afs(·)(1k)) ≤ negl(k)

where x is not allowed to be queried to the oracle fs(·). Hence, to construct our first secure
MAC it suffices to construct an unpredictable function family. Not suprisingly, a PRF family
is an unpredictable family, provided its output length b is “non-trivial” (i.e., ω(log k), so
that 2−b = negl(k)).

3The canonical verification is important. Otherwise, one can have artificial examples where carefully
crafted verification queries on a message whose “canonical” tag is known to the attacker could reveal the
entire secret key s.
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Theorem 1 (PRF⇒ MAC) If F is a PRF family with non-trivial output length, then F is
unpredictable, and thus defines a secure deterministic MAC.

Proof: By the random function model, we can replace fs with a truly random function
f with output length b. Since b is “non-trivial” and x has to be “new”, any adversary
has a negligible probability (exactly 2−b in the random function model) to predict f(x),
completing the proof.

Hence, “pseudorandomness implies unpredictability”. But does the converse hold? It
turns out the answer is “yes”, but the construction is quite tricky. Given unpredictable
F , we construct the following family G with output length 1 bit (from the properties of
PRF’s, such “short” output is not a problem and can be easily stretched), very similar to
the Goldrecih-Levin construction.

Theorem 2 (Naor-Reingold, Goldreich-Levin) Let F = {fs : {0, 1}ℓ → {0, 1}b | s ∈
{0, 1}k} be an unpredictable family. Define G = {gs,r : {0, 1}ℓ → {0, 1} | s ∈ {0, 1}k, r ∈
{0, 1}b} as follows: gs,r(x) = fs(x) · r mod 2, where α · β denotes the inner product modulo
2, for α, β ∈ {0, 1}b. Then G is a PRF family.

We remark that it is very important that the value r be kept secret (as implied by the
notation above). Notice, this is different from the usual Goldreich-Levin setting, where the
anverter for the one-way function learns r. Also notice that we now know that OWF ⇒
PRF⇒ MAC⇒ OWF, i.e. all these primitives are equivalent!

5.4 Dealing with Long Messages

In practice, concrete PRF have short fixed input length ℓ (for example, when implemented
using a block cipher). One the other hand, in practice we want to be able to sign messages
of length L ≫ ℓ (e.g., one wants to sign a book using 128-bit block cipher modelled as a
PRF). There are two approaches to deal with this problem.

1. Split m into n blocks m1 . . .mn of length ℓ each (let’s not worry about messages
whose lenth is not a multiple of ℓ). Somehow separately tag each block using fs. The
simplest approach would be to just output fs(m1) ◦ . . . ◦ fs(mn) as a tag. However,
one can easily see that this is insecure (why?). Using more advanced suggestion, one
can try fs(1 ◦m1) ◦ . . . ◦ fs(n ◦mn). Again, there is a problem (which?). Turns out
that a few more “fixes” can make this approach work. Unfortunately, the length of
the tag now is quite large (proportional to nb = Lb/ℓ, which could be large). Can we
make it smaller? This is what the second approach below does.

2. The second approach involves a general efficient construction of a PRF family on L
bit inputs from the one on ℓ ≪ L bit inputs. Moreover, the output of the resulting
PRF is as short as that of the original PRF (implying that tags as still very short!).
Notice, this is more general than building a “long-input” MAC out of a “short-input”
PRF: we actually build a “long-input” PRF!

The idea is to design a special shrinking (hash) function h : {0, 1}L → {0, 1}ℓ and
use fs(h(m)) as the tag. Notice, however, since there are 2L−ℓ times more possible
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messages than there are possible hash value, there are many pairs of messages (m1,m2)
which “collide” under h: h(m1) = h(m2). Unfortunately, the knowledge of any two
such messages m1 and m2 allow the adversary to produce break the resulting “pseudo-
PRF”; in fact, to produce a forgery of the resulting “pseudo-MAC”. Indeed, since
fs(h(m1)) = fs(h(m2)), A can ask for the tag α = fs(h(m1)) ofm1 and output (m2, α)
as the forgery of a “new” message m2. There are two ways out of this problem:

• First way is to notice that it suffices to ensure that it is computationally hard to
find such a collision (m1,m2) for h, even if the attacker knows the description
of h. Such functions are called collision-resistant hash functions (CRHFs). It is
easy to see that using CRHFs is easily enough to solve our problem. However,
we will see that it is quite non-trivial to construct them.4 We will come back to
this approach soon.

• A simpler and more effective way to solve the problem is to use a secret function
h not known to the attacker. Formally, we need a family of hash functions h:

H = {ht : {0, 1}L → {0, 1}ℓ, t ∈ K}

where K is the correspinding key space for t. Now, we pick two independent
keys for our resulting family F(H): the key s for fs, and the key t for ht, i.e.
F(H) = {fs(ht(·))}. The main question is:

What properties of H make F(H) is a PRF family when F is such?

We answer this last question in the next section.

6 PRF and Universal Hashing

As the first observation, notice that for no two messages m1 6= m2 can we have Prt(ht(m1) =
ht(m2)) ≥ ε, where ε is non-negligible. Namely, no two elements are likely to collide. Indeed,
otherwise the adversary who learns α = fs(ht(m1)) has probability ε that fs(ht(m2)) = α,
which breaks the security of the PRF. It turns out that this necessary condition is also
sufficient!

Definition 5 [ε-universal family of hash functions] H is called ε-universal if

∀ x, x′ ∈ {0, 1}L, s.t. x 6= x′ =⇒ Pr
t

(ht(x) = ht(x
′)) ≤ ε

If ε = 2−ℓ (which turns out the smallest it can get when ℓ < L), then H is simply called
(perfectly) universal. In assymptotic terms, H is called almost universal (AU) if ε =
negl(|t|). ♦

Theorem 3 F(H) = {fs(ht(·))} is a PRF(and thus defines a MAC) if F is a PRF family
and H is almost universal.

4In particular, it turns out one is unlikely to construct them even from the strongest general assumption
that we studied so far — existence of TDPs. However, we will later construct them from specific number-
theoretic assumptions, such as discrete log.
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Proof: We have to show that ∀ PPT A, Afs(ht(·)) ≈ AZ(·), where Z is random function
from {0, 1}L to {0, 1}b. We will use two-step hybrid argument:

Afs(ht(·)) ≈ AR(ht(·)) ≈ AZ(·)

where R is random function from {0, 1}ℓ to {0, 1}b. The first step immediately follows from
the definition of PRF. Hence, it suffices to show that AR(ht(·)) ≈ AZ(·).

Let m1 . . .mq be (wlog, distinct) queries A makes to its oracle (whatever it is). When
given oracle access to Z(·), A gets q totally random and independent values. Intuitively,
since R is a radnom function, as long as no two values ht(mi) collide, A also gets q totally
random and independent values. Thus, it suffices to show that the probability ht(m) =
ht(mj) for some i and j is negl(k). Since H is ε-unversal, where ε = negl(k), and there are
at most q2 ≤ poly(k) pairs of i and j, the intuitive claim above follows, since q2ε = negl(k).

The above intuition is almost formal, even though making it formal is slightly tricky.
Let X be the event that during A’s run with R(ht)-oracle, a collision happened among
ht(m1) . . . ht(mq). First, if X does not happen, the values R(ht(m1)) . . . R(ht(mq)) are all
random and independent from each other, exactly as the Z-oracle would return. Hence,
the probability that A can tell apart the “Z-world” and the “R(ht)-world” is at most the
probability of X (defined in the “R(ht)-world”). However, and this is the tricky point, once
a collision happens in “R(ht)-world”, it does not matter how we answer the oracle queries
of A, since X has already happened!

Specifically, we can imagine the modified “R(ht)-world”, where all the queries of A are
answered completely at random and independently from each other, irrespective of whether
of notX happened. We claim that this does not alter the probability ofX. Indeed, up to the
point a collision happened (if it ever happens), all the queries are supposed to be answered
at random, since R is a random function. What happens after X happens is irrelevant. But
now we run A in a manner independent from t. Indeed, all the queries are simply answered
at random. Thus, we can imagine that we first ran A to completion, and only then selected
t and checked if X (i.e., a collision among ht(m1) . . . ht(mq)) happened! But this means
that m1 . . .mq are defined before (and independently from) t. By the ε-universality of H,
and since there are at most q2 pairs of indices i < j, we get that Pr(X) ≤ q2ε = negl(k),
since q is polynomial and ε is negligible. This argument completes the proof.
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Last time we defined almost universal hash functions, and showed how they are useful
for message authentication. Recall, such family H = {ht : {0, 1}L → {0, 1}ℓ} has the
property that for all m 6= m′, Prt(ht(m) = ht(m

′)) ≤ ε, where ε is negligible in the secuirty
parameters. We now give a variety of almost universal families H. As will will see, this
primitive is quite easy to construct, both information-theoretically and computationally.
Then we proceed to study the resulting MACs, as well as several other ways to design
MACs. Then we switch our attention to collision-resistant hash funstions.

1 Information-Theoretic Examples

Inner Product Construction. Let F be a finite field of size roughly 2ℓ. In particular,
F = GF [2ℓ] is most convenint, but F = Zp is also OK for p ≈ 2ℓ. View the message
m ∈ {0, 1}L as n elements m1 . . .mn of F , where n ≈ L/ℓ. For example, if F = GF [2ℓ], we
simply split the message into ℓ-bit chucks m1 . . .mn and view each block mi as an element
of GF [2ℓ].

The secret key t of h consists of n elements a1 . . . an of F . Thus, the length of t is
(roughly) L, equal to the length of the message m. Now, define

ha1...an
(m1, . . . , mn) =

n
∑

i=1

aimi (the operations are in F )

Let us now examine the probability of a collision for any m 6= u. Let zi = mi−ui. As x 6= y,
at least one of the zi is a non-zero element of F . By symmetry and for the ease of notation, let
us assume that this is z1 6= 0. Now, in order for ha1...an

(m1, . . . , mn) = ha1...an
(u1, . . . , un),

we must have

n
∑

i=1

aimi =
n
∑

i=1

aiui ⇔ a1z1 = −
n
∑

i=2

aizi ⇔ a1 = −

(

n
∑

i=2

aizi

)

/z1

Now, what is the probability that a random field element a1 is equal to the last expression
(whatever that experssion is, notice that the choice of a1 is independent of it)? Clearly, it
is 1/|F | ≈ 2−ℓ. In particular, it is the optimal value 2−ℓ when F = GF [2ℓ]. Thus, this
construction achieves optimal ε, but the key length of t is equal to L, which is too large.
Instead, we would like the key to be O(ℓ), independent of the size L of the message!

Polynomial Construction. As before, let F be a finite field of size roughly 2ℓ (either
Zp, or, more conveniently, GF [2ℓ] since it takes exactly ℓ bits to represent an element in
this field). As before, view m = m1, . . . , mn (i.e., |m| = L ≈ nℓ), where each mi ∈ F . Now,
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however, we view m1 . . .mn as n coefficients of a degree (n − 1) polynomial over F (see
below). We will also select a random point x ∈ F as the key to a function hx in the hash
family, defined as

hx(m1, . . . , mn) = qm(x) =
n
∑

i=1

mi · x
i−1

where all the operations are done in F . Let’s examine the probability of a collision between
two distinct “polynomials” m and u. A collision here means

hx(m) = hx(u)⇐⇒ qm(x) = qu(x)⇐⇒ qm−u(x) = 0⇐⇒
n
∑

i=1

(mi − ui) · x
i−1 = 0

where at least one mi − ui 6= 0, i.e. qm−u(·) is a non-zero polynomial of degree at most
(n− 1). It is a well known fact that any non-zero polynomial of degree d can have at most
d roots in F . Since the point (our key) x ∈ F was chosen at random, the probability that
x is one of these at most (n− 1) roots of qm−u(·) is at most n−1

|F | ≈
L
2ℓℓ

, which is negligible.

Also, the key size is only ℓ bits, independent of the message length L = nℓ (instead, the
error depends on L). It turns out that one can achieve the best of both world — small key
length and error probability close to 2−ℓ. Concretely, one can acheive |t| = O(ℓ + log N)
and ε = 21−ℓ. But we will not give this construction here.

2 Computational Examples (XOR-MAC, CBC-MAC, HMAC)

The next several examples use a PRF family F = {ft : {0, 1}ℓ → {0, 1}ℓ}. Notice, we
are slightly cheating here for 2 reasons. First, we are using “short-input” PRF ft to build
“long-input” computationally almost universal H = {ht}. This means that for any PPT

attacker who outputs two messages x′ 6= x′, the probability that ht(x) = ht(x
′) is negligible:

Pr(ht(x) = ht(x
′) | t← $, (x, x′)← A(1k)) = negl(k)

This is luckily enough for our purposes (i.e., the composition of “short” PRF with computa-
tionally almost universal H still yields “long” PRF). But the reason this comes up is that in
the analysis of ε-universaility we will immediately replace ft by a truly random function R.
But this change means that the actual family we construct using F is only computationally
almost universal.

Second, to build our “long-input” PRF, we will have to combine our ht constructed
using ft with another independently selected PRF fs, via fs(ht(·)). As we will see, however,
a simple general trick allows us to avoid making s and t independent. Namely, sacrifize 1 bit
in ℓ, and always apply fs(1, ·) when constructing the hash function ht(·), and use fs(0, ht(·))
on the outer layer. Using the “random function paradigm”, fs(0, ·) and fs(1, ·) indeed look
like two independent random function. In fact, in specific cases will not even have to do
that (see below), even though it is a very inexpensive “loss” anyway. Below, we describe
the hash function without the domain separation “trick” above.

To summarize, the advantage of using a PRF in bulding H is saving on the key size +
making the construction possibly very efficient (since “practical” PRF’s are very cheap). As
a downside, the error probabilities will be worse, and will depend on the “computational
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closeness” of our PRF to a truly random function. Namely, to prove the universality of the
hash function, we first assume that ft is a truly random function (by the “random function
paradigm”), and then prove the information-theoretic security as before.1

In all the examples below, we assume that: m = m1 . . .mn, where all |mi| = ℓ′, L = ℓ′n,
ℓ′ ≈ ℓ (see below for details), the number of blocks n is fixed,2 and t is a random key for our
“base” PRF.

Using XOR Mode. Define

ht(m1 . . .mn) = ft(m1, 1)⊕ ft(m2, 2)⊕ · · · ⊕ ft(mn, n)

(so that the input to the PRF is slightly longer: ℓ = ℓ′ + log n bits long). Assuming f is a
truly random function from ℓ to ℓ bits, and if (u1, . . . , un) 6= (m1, . . . , mn), say mi 6= ui, we
get that

Pr
f

[f(m1, 1)⊕ · · · ⊕ f(mn, n) = f(u1, 1)⊕ · · · ⊕ f(un, n)] = Pr
f

[f(mi, i)⊕ f(ui, i) = α]

=
1

2ℓ

where α is some string independent3 of f(mi, i) ⊕ f(ui, i), which in turn is random since
ui 6= mi. As we indicated, to build a PRF out of it, we actually use

fs(0, fs(1, m1, 1)⊕ · · · ⊕ fs(1, mn, n))

Using CBC Mode (CBC-MAC). We can view this construction as simply applying
the CBC mode of operation with IV being 0ℓ (a string of ℓ zeros), and outputting the last
block only (remember, we do not need to “decrypt”, only to “tag”):

ht(m1 . . .mn) = ft(mn ⊕ ft(mn−1 ⊕ . . .⊕ ft(m2 ⊕ ft(m1)) . . .)) (1)

The proof of (computational) universality of this H is a bit tricky, so we omit it. The main
ideas are similar to what we have done earlier with CBC-encryption: intuitively, if m 6= u,
say mi 6= ui, and f is a truly random function, the values ht(m) and ht(u) “diverge once
and for all” w.h.p., starting at the i-th application of the f .

Lemma 1 The function ht defined in Equation (1) is computationally AU.

In order to get a PRF out of this variant of CBC, it seems like we need to apply an
indepependent PRF fs to the ht above. Indeed, this variant is called encrypted CBC-MAC,
and we will again come back to it in Section 4:

Encrypted-CBC(m) = fs(ft(mn ⊕ ft(mn−1 ⊕ ft(. . . ft(m2 ⊕ ft(m1)) . . .)))

1Of course, the construction will be inefficient with a truly random function, but this does not concern

us: the efficient PRF construction is what we are using, only the proof uses a random function.
2See Section 4 for more on this restrictive assumption.
3That is why we used the block number inside f .
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However, by revisiting the analysis of Lemma 1 more carefully, we see that it actually shows
more. Namely, even without applying an outside fs to the above construction, we already
get a PRF! More specifically, consider the following function known as the CBC-MAC, which
is the same as the the function in Equation (1), except we renamed t to s:

CBC-MAC(m) = fs(mn ⊕ fs(mn−1 ⊕ fs(. . . fs(m2 ⊕ fs(m1)) . . .)))

Theorem 1 CBC-MAC is a PRF on L bit inputs, if fs is a PRF on ℓ-bit inputs.

The proof of this result is slightly tedious, but follows the same structure as the proof of
almost universality we mentioned. Essentially, on any two distinct messages m 6= u, at the
first message block i where mi 6= ui, the current computation values of CBC-MAC(m) and
CBC-MAC(u) will diverge to random once and for all. So all the output values are random
and unrelated, meaning that we get a PRF.

CBC-MAC scheme is extremely popular, and is extensively used in practice. We also
remark that we do not actually need F be a PRP family here (unlike for the encryption
where we need to recover the message), any length-preserving PRF family is enough!

Using Cascade Mode (and HMAC). This next example builds a hash function ht :
{0, 1}L → {0, 1}ℓ using a different PRF family {ft}. Specifically, we do not care as much
about the input size of ft (but the larger the better), let use call it b, but care that the
output size is ℓ and the key size k is at most ℓ. In practice, for example, one uses input of
size b = 512, and output and key size both either ℓ = 128 or ℓ = 160. However, we will see
that the construction works even for b = 1!

Now, split the message m into m1 . . .mn, except now each chuck is of size b, so that
L = bn. The initial key t to ht is chosen at random from {0, 1}ℓ, and then we inductively
define values x0 . . . xn ∈ {0, 1}ℓ as follows:

x0 = t

xi = fxi−1
(mi)

Finally, the output ht(m1 . . .mn) = xn. To describe it differently, ft(m1) determines the
PRF key x1 to be used in the next round with input m2, which in turn defines the PRF key
x2 to be used with the next input block m3, and so on. This construction is called cascade
or Merkle-Damgard. Notice, it really works for any input size b ≥ 1, at the price of using
L/b evaluations of the underlying PRF f (so larger b yields more efificency).

The intuition behind this construction is quite similar to the case of CBC-MAC, and
is the following. First, since all xi’s are PRF outputs, they are computationally indistin-
guishable from random. Second, the very first block i separating two L-bit messages m
and u would result in two computationally independent PRF keys xi derived after the i-th
call to f , and from this point on evaluating h on m and u looks totally independent. Of
course, with small probability the “chains” might “converge” again, but by simple birthday
argument this convergence is quite unlikely (we omit formal bounds here). In particular,
we can argue

Lemma 2 The cascade construction defines a computationally AU family of hash functions
{ht : {0, 1}L → {0, 1}ℓ}.
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In fact, the analysis shows more. Not only is H computational AU (meaning it can
be composed with a freshly keyed PRF), but it is a PRF by itself! Intuitively, the above
argument really said that the moment message diverge, everything stays random, and since
any non-equal messages must diverge evetually, we get a PRF!

Theorem 2 The cascade construction defines a PRF from L bits to ℓ bits.

Why do we then care about Lemma 2 if we have Theorem 2? The reason will be clear in
Section 4: it will have to do with our assumption that the message length L is fixed, which
is a bit too restrictive in practice. But now let us try to see what the cascade construction
gives us:

(1) It actually gives us a PRF by itself. In fact, it turns any PRF with large enough
output size (and not too large key size) into an arbitrary (but FIXED) length PRF,
no matter how small the original input size b is. In fact, when b = 1 the base
PRF ft : {0, 1} → {0, 1}ℓ, where |t| = ℓ, simply becomes a length doubling PRG

G : {0, 1}ℓ → {0, 1}2ℓ via G(t) = ft(0) ◦ ft(1)! Moreover, applying the cascade to
this PRG G reduces the cascade construction to the GGM construction of PRFs from
PRGs! (check it yourself!) In essense, using larger b > 1 lets us use a 2b-ary tree
instead of the binary tree, which brings the depth from L = L/1 to L/b (meaning
that one need L/b evaluations of f to compute the cascade).

(2) It also gives us a computational AU family of functions. Thus, if we combine it
with another PRF gs : {0, 1}ℓ → {0, 1}c, we get a composed PRF as well. The only
problem here is that we would like implement gs using fs, but the domains do not
exactly match. gs should take ℓ-bit inputs, and fs takes b-bit inputs (and outputs
ℓ-bit output). If b ≥ ℓ, which is the case in practice, this is not a problem: simply
view the ℓ-bit input ht(m) to fs as a b-bit input (i.e., pad it with b − ℓ zeros or
something). Even otherwise, we can use Lemma 2 and build an ℓ-bit input PRF gs

out of fs. But since this is never used, we’ll assume b ≥ ℓ, and write fs to mean an
ℓ-bit input PRF (even though it can take potentially longer inputs). The resulting
construction is called NMAC. More specifically, NMAC uses PRF f from b bits to ℓ
bits (and key size ℓ), where in practice b ≥ ℓ, has two independent keys s and t, and
essentially does fs(ht(m)), where ht is the cascades mode applied to m. In practice,
we do not like to have two keys though, so a variant of NMAC which uses only one key
is called HMAC. A sound implementation of HMAC should have sacrificed one input
bit and prepended 0 for s and 1 for t like we described before, but instead it does
something more heuristic. More or less, it sets s = t + constant, where the constant
is heuristically chosen and fixed. Thus, in the future we will only concentrate on the
theoretically-cound NMAC mode.

3 A Different XOR-MAC

We also mentioning another popular MAC paradigm which uses a PRF’s and the XOR mode
of operation. Namely, let F be the PRF family and H be a hash family from L to ℓ bits,
whose properties will be given in a second. Rather than making the MAC output fs(ht(m)),
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we now let it output (nonce, fs(nonce)⊕ ht(m)). The verification of (nonce, v) checks that
v = fs(nonce) ⊕ ht(m). Here nonce is the value that w.h.p. never repeats again, like
a random string, or a counter (notice the similarity with encryption). In particular, this
method is typically either randomized (nonce is random), or stateful (nonce is a counter),
unlike our previous fully deterministic methods. Also, one has to either know or transmit
the nonce. Finally, it is used only to make a MAC, and not a (more general) “long-input”
PRF.

Still, what are the properties of H that make this method go through? As a simple
attack, given a valid tag (nonce, v) of m and a value a, the adversary can try to output a
“forgery” (nonce, v ⊕ a) for some m′ 6= m. It is easy to see that this will be successful if
and only if ht(m)⊕ht(m

′) = a. Since a, m, m′ are arbitrary, at the very least we must have
that for any m 6= m′, and any a ∈ {0, 1}ℓ, we have

Pr
t

(ht(m)⊕ ht(m
′) = a) ≤ ε

(where ε is negligible). Such families are called ε-xor-universal (or almost XOR-universal,
or simply, AXU). Notice, regular ε-universality corresponds to a = 0 since ht(m) = ht(m

′)
iff ht(m) ⊕ ht(m

′) = 0. Thus, a further disadvantage of this method is that it uses more
restrictive classes of hash functions! However, the latter criticism is typically not a big
deal, since most natural universal families are actually xor-universal. It turns out that
xor-universality is sufficient:

Theorem 3 fs(nonce) ⊕ ht(·) defines a secure MAC whenever all the nonces are unique
w.h.p., F is a PRF family and H is AXU.

The most used xor-universal family comes from the XOR mode of the previous section
(and uses PRF to build ht):

ht(m1 . . .mn) = ft(m1, 1)⊕ ft(m2, 2)⊕ · · · ⊕ ft(mn, n)

It is easy to see that our proof from the previous section in fact showed that H is AXU
(check it). As in the previous section, we have to use the trick with prepending 0 and 1 to
make the final MAC construction and use the same key:

Tags(m) = (nonce, fs(0, nonce)⊕ fs(1, m1, 1)⊕ · · · ⊕ fs(1, mn, n))

This is called the XOR-MAC. Naturally, it has a randomized or counter flavor depending
on whether the nonce is random, or is a counter (in the later case the nonce need not be
explicitly sent over).

But why use this method given its two disadvantages (only a MAC + slightly stronger
assumption of h)? The point is that the security of H depends on the output size of the PRF,
rather than the input size like we had in the fs(ht(m)) composition. Namely, if previously
h : {0, 1}L → {0, 1}input length off , now we have h : {0, 1}L → {0, 1}output length off . And
since it is much easier to extend the output of a PRF than it’s input, we get that this XOR-
MODE might yeild considerably better exact security in practice, especially if used with
counters (so that one does not have to pay a birthday bound on nonce which depends on the
input length of f). Overall, which MAC is better depends on a variety of parameters, with
most constructions being incomporable (i.e., for different circumstances either one could be
better).
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4 Variable Length-Inputs

So far we made a convenient simplifying assumption that all the inputs to a MAC are of
the same length L. In practice, this assumption is extremely inconvenient, and we would
like to build variable-length MACs: namely, MACs which work for any input size in {0, 1}∗.

First, let us revisit our constructions so far (whose key length is independent of the
message length), and see which ones are right away secure variable-length MACs. As we
will see, the answer is essentially “all except cascade and CBC-MAC”.

• Polynomial Construction. Although the construction is insecure the way we
stated it, — since the polynomial corresponding to m1 . . . mn is the same as the
one corresponding 0ℓm1 . . .mn, — it is very easy to fix. Simply prepend a fixed
non-zero block a to each message. Thus, polynomial corresponding to m is now
qm(x) = axn +mnxn−1 + . . .+m1. Now if m has n blocks, u has b blocks, and m 6= u,
then the difference between qm(x) and qu(x) is a non-zero polynomial of degree at
most max(n, b). Indeed, if n = b, then axn cancels, but the remaining polynomials
won’t cancel since m 6= u; else, say n > b, the term axn will not cancel (and, similarly,
when n < b).

• AU-based or AXU-based XOR Modes. It is easy to see from the analyses
of either mode that it can directly handle variable-length messages, since the block
number is always included when evaluating ft, so both the computational AU and the
AXU properties still hold.

• CBC-MAC and cascade. It is not hard to see that either one of these modes
is not secure when dealing with variable length messages. We give the reason for
the cascade, leaving the (slightly more complicated) attack on the CBC-MAC as an
exercise. The problem is the so called extension attack. Given a cascade of the
message m = m1 . . . mn, we can easily forge a tag for any extended messages m′ =
m1 . . . mnmn+1 . . .mb, where b > n. The reason is that the output of x = cascade(m)
is the PRF key we need to plug in to continue evaluating x′ = cascade(m′) starting
from the (n + 1)-st block. Specifically, x′ is simply the cascade of mn+1 . . .mb with
the key x. Thus, if we learn x, we can compute the tag of any extended message by
ourselves! Thus, Theorem 2 and Theorem 1 are not true for variable-length messages!

On the positive side, it is easy to see that the above attack if the only attack on the
cascade and the CBC-MAC. In particular, if we encode messages we tag in a prefix-
free form, — namely, no encoded message is a prefix of another encoded message, —
the cascade and the CBC-MAC are still secure.

• Encrypted CBC-MAC and HMAC. We claim that the encrypted versions of
CBC-MAC and cascade (i.e., the NMAC) are still secure, even for variable-legth
messages. To prove this, we only need to show that CBC-MAC and cascade remain
computational almost universal even for variable length messages. In other words, we
claim that Lemma 1 and Lemma 2 are still true!

The argument is an extension of the one used to prove Lemma 1 and Lemma 2. There,
we used the fact that ones the messages m 6= u “diverge”, they never meet again. As
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we said, this analysis also works for prefix-free messages m 6= u. In the general case,
say, when m is a prefix of u, we also have to argue that it is unlikely to have short
“cycles”. The argument is not very hard, and uses the same kind of birthday bounds
we gave so far. So we will omit it from here.

To summarize, for variable-length messages, it is always safe to use HMAC and en-
crypted CBC-MAC. If one additionally knows (or can enforce) the messages to be
prefix-free, then basic cascade and CBC-MAC are also secure.

5 CCA-secure and Authenticated Encryption

We briefly touch upon more advanced topics. First, recall from the homework the notion
of CCA-security.

Definition 1 SKE (Gen, E, D) is IND-secure against CCA attack iff ∀PPTB = (B1, B2),

Pr[ b = b̃ | s← G(1k);

(m0, m1, β)← BEs,Ds

1 (1k);
b← {0, 1};
c̃← Es(mb);

b̃← BEs,Ds

2 (c̃, β); ] ≤ 1
2

+ negl(k)

where B2 cannot call Ds on input c. ♦

The definition is quite natural, and allowes the attacker to have oracle access to both the
encryption and decryption functionality. Recall also from the homework that the following
encryption scheme, based of a pseudorandom permutation gs is CCA-secure: Es(m; r) =
gs(m ◦ r), where m ◦ r is concatentation of m and randomness r. The decryption simply
recovers m ◦ r by computing g−1

s (c) and “drops” r.
We will now give another way of constructing CCA-secure schemes, which is more general

and has stronger security properties. In fact, recall that encryption schemes and message
authentication schemes have roughly the same syntax, but different goals. Both take mes-
sage m, and convert it into some other “enveloped” message c, by using the secret key s.
And the recipient should recover m (or output invalid) from c, again using s. For encryp-
tion, we cared about privacy: no information about m should be contained in c, while for
authentication we cared about authenticity: the recipeint should be sure that m came from
the sender, irrespective of whether or not m is hidden. What if we combine these two goal?
We get an extremely useful primitive called authenticated encryption.

In brief, authenticated encryption is again a triple of algorithms (G, E, D). G is the
key generation algorithm, i.e. G(1k) produces the shared secret key (usually, a truly
random sting of some length). As usual, c ← Es(m) produces the ciphertext, while
Ds(c) → m̃ ∈ M ∪ {⊥}, where M is the message space (say, M = {0, 1}k), and ⊥ de-
notes “invalid”. For privacy, we want (G, E, D) to be an IND-secure encryption scheme
against CPA (chosen plaintext attack). However, now we also want (G, E, D) to be a secure
message authentication scheme (strongly) existentially unforgeable against chosen message
attack. Notice, here a successful forgery constitutes producing c s.t. Ds(c) 6=⊥, and c was
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never returned by the “tagging” (i.e., “encryption”)4 oracles. Also notice the attacker does
not necessarily need to “know” the message he is forging.

It is a good exercise (see homework) to see what is “wrong” with the CCA-secure en-
cryption scheme gs(m ◦ r) mentioned above, in the context of authenticated encryption. In
fact, in the homework you will show that (r, gs(m ◦ r)) is in fact a secure authenticated
encryption. Here, however, we want to mention several useful properties of authenticated
encryption:

Theorem 4 A secure symmetric-key authenticated encryption is always a CCA-secure symmetric-
key encryption. Namely, CPA-security coupled with (strong) unforgeability implies CCA-
security.

The theorem is simple, so we only hint on the proof. Intuitively, if the scheme is
unforgeable, then the decryption oracel is “useless”: either the attacker already knows the
answer (i.e., he got it from the encryption oracle before), or he gets ⊥ (which is “useless”)
or he forged a valid ciphertext never returned by the encryption oracle.

Thus, instead of directly shoing CCA-security, it suffices to show CPA-security plus
unforgeability. In fact, doing so will give a strictly stronger primitive of authenticated
encryption!

Constructions of AE. This is an active area of research, and there are many interesting
constructions. We already mentioned one above. Here we just metnion another: encrypt-
then-mac. The secret key consists of two keys s for CPA-secure encryption and u for strongly
unforgeable MAC. Then, AEs,u(m) = (c ← Encs(m), t ← Tagu(c)), while authenticated
decryption first checks if t is a valid tag of c, and only then outputs m = Decs(c). We leave
it a simple exercise to argue the security of this scheme.

4Notice, in this scenario the “tagging” and “encryption” oracles are the same.
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We saw that ε-universal hash families are very useful in the design of pseudorandom
functions (and, thus, message authenticated codes). We will see, however, that we will need
stronger hash functions when we design digital signature schemes. Such hash functions
are called collision-resistant and this lecture is primarily dedicated to their definition and
constructions. Interestingly, we will see that CRHFs are also useful in the domain extension
of MACs which are not necessarily PRFs.

At the end nof the lecture we will introduce digital signature schemes, and show how
CRHFs simplify the design of such signatures via the “hash-then-sign” paradigm. The
lecture will conclude with some advanced topics which are completely optional to study.

1 Motivation: Domain Extension of MACs

Recall, if gs is a PRF, and ht is ε-universal (for negligible ε), then fs,t(m) = gs(ht(m)) is
a PRF as well. What if gs is “only” a MAC, and not necessarily a PRF? The proof we
had before breaks down. In fact, one can construct and artificial MAC gs which is not a
PRF, for which the function fs,t is not secure even with natural ε-universal functions, like
matrix-vector multiplication. Thus, if we hope for the “hash-then-mac” approach to work
much like “hash-then-prf” did, we need a stronger kind of hash function ht.

It turns out that such strong type of ht exists, and is they are called weakly collision-
resistant hash functions (WCRHFs). Intuitively, a WCRHF ht has the property that the
attacker cannot find two distinct inputs x 6= y such that ht(x) = ht(y), even when having
oracle access to ht(·) (recall, t is a secret key). In other words, for ε-universal hash functions
the attacker had to find x and y without oracle access to ht, while here we allow such access.
We will not prove it (it’s not very hard), but the following the the corresponding theorem
for the domain extension of MACs:

Theorem 1 If gs is an ℓ-bit MAC, and ht is a WCRHF from L bits to ℓ bits, then fs,t(m) =
gs(ht(m)) is an L-bit MAC.

Intuitively, the attacker A forging the MAC fs,t and producing a forgery m either had to
use m such that ht(m) is “new” (different from ht(mi), where mi are the message MAC’ed
by A), or ht(m) = ht(mi), fior some i and m 6= mi. The first case easily leads to the forgery
of the MAC gs (on message ht(m)), while the second case leads to a collision (m, mi) for ht.

Unfortunately, most ε-universal hash functions are not weakly collision-resistant (in
fact, WCRHFs imply one-way functions, but this is tricky to show). Still, it is possible to
construct relatively simple WCRHFs (simpler than PRFs), but this topic is too advanced for
this class. Instead, we notice that the domain extension of MACs would be even simpler
if we had an even stronger type of function: a (strongly) collision-resistant hash function

Lecture 12, page-1



(CRHF). Intuitively, ht where collisions are hard to find even when giving the key t to the
attacker! We define such functions in the next section.

2 Collision-Resistant Hash Functions

Let k be the security parameter, and Gen(1k) be the generation algorithm which outputs a
public key PK, and, if needed, a description of the message spaceM =M(PK) out output
space R = R(PK). We require that |M| > |R|. In fact, for simplicity, below we assume
M(k) = {0, 1}L(k), R(k) = {0, 1}ℓ(k), where L(k) > ℓ(k). However, all the discussion easily
generalizes to any domain M and range R, as long as |M| > |R|. In particular, as we
explain later, in practiceM will be equal to {0, 1}∗ (all finite strings) rather than {0, 1}L.

Definition 1 A family of functions H = {hPK :M(PK) → R(PK)} generated by Gen

is called a family of collision-resistant hash functions (CRHFs) if (a) |M| > |R|, (b) hPK is
efficiently computable for any PK, and (c) for any PPT attacker A,

Pr[x 6= x′ ∧ hPK(x) = hPK(x′) | PK ← Gen(1k), (x, x′)← A(PK, 1k)] ≤ negl(k)

♦

To compare with ε-universal hash functions, there the description of the function is
chosen at random after the attacker committed to x 6= x′. In contrast, here the attacker
learns the description PK of the CRHF before trying to find a collision. In particular, we
had information-theoretic ε-universal function families, while any family of CRHFs must be
based on computational assumptions. Indeed, since |M| > |R| for any public key PK, any
PK has some non-trivial (i.e., x 6= x′) collisions, so the only reason A cannot find them is
because A is computationally bounded.

Application to MACs. Notice, Theorem 1 is really trivial to see with CRHFs in place
of WCRHFs. We leave it an an exercise, later proving an anlogous results with digital
signatures.

3 Extending the Domain of CRHF

Before constructing specific CRHFs, we study the question of their domain extension.

General Composition Idea. Here is a general idea. If it is too general, you can skip
this paragraph and look at our two main examples. Let T be any tree where each internal
nodes of this tree has an ordered list of its chidren. A valid labeling of this tree corresponds
to: (1) associating some string with each leaf of the tree; (2) associating some function with
every internal node of the tree; (3) making sure the associations above are consistent in the
following sense. Starting with the leaves and moving up towards the root, we require for
each internal node N the following: if N is associated with a function f from b1 to b2 bits
and has children N1 . . . Nt, then sum of lengths of strings s1 . . . st associated with N1 . . . Nt

is exactly b1. If this is true, we associate the string s = f(s1, . . . , st) with N and move
up the tree (thus, the string associated with N has length b2). At the end, the label of
the whole tree is the label of its root. Essentially, we want to ensure that “all the lengths
match”.
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In our compositions, we start with some hash family H, and construct a new hash
family H′ with much larger input length, by means of some conveniently chosen tree T . The
functions we put in the internal nodes of T will be the hash functions from the corresponding
original family H, the labels of the leaves will be parts of the much longer input to the
functions in H′, while the label of the tree (the root) is the output of the new hash fucntion.

Merkle-Damg̊ard and Merkle Tree. Two main example we will use are given below.
In both examples, one chooses a single hash function h from H at random and uses it at
all levels of the tree. However, for the sake of generality and because it will be useful a bit
later, we denote the hash function associated with internal node i by hi, despite the fact
that for our current purposes all of them are really equal to the same h.
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ℓ→ ℓ for depth d nc + ℓ→ ℓ for depth n

Merkle Tree Merkle-Damg̊ard

• Cascade (or Merkle-Damg̊ard). Assume H goes from ℓ + c to ℓ bits for some
c > 0 (in fact, c could be as small as 1). Set L = ℓn + c, write input x ∈ {0, 1}L as
x = x0 ◦ x1 ◦ . . . ◦ xn, where |x0| = ℓ and each |xi| = c for i > 0. Given functions
h1 . . . hn ∈ H, set

H(x0 ◦ x1 ◦ . . . ◦ xn) = hn(xn ◦ hn−1(xn−1 ◦ . . . ◦ h2(x2 ◦ h1(x1 ◦ x0)) . . .))

Notice that this function family corresponds to a tree which is a long path of depth
n. A useful sub-example corresponds to c = 1 and n = ℓ − 1. Then we get H going
from 2ℓ to ℓ bits from hi’s going from ℓ + 1 to ℓ bits each.

The Merkle-Damg̊ard transform is extensively used in practice. Although it uses a
tree which is just a long path, it is very convenient since: (a) it works for any value of
c > 0, making it very flexible; (b) it allows to process the data in one pass, from left
to right (in particular, one does not need to know the length L before one starts); and
(c) the lack of parallelism (compared with the second example below) is usually not

Lecture 12, page-3



very important in practice, since the data often comes in sequentially and/or parallel
machines are anyway not readily available.

• Merkle Tree. A more interesting example comes from the complete binary tree
(CBT), when we start from the family from 2ℓ to ℓ bits. Using a complete binary tree
of depth d, we get a new family from 2dℓ to ℓ bits.

The most obvious advantage of the Merkle tree isea is that it allows to process data in
parallel, as opposed to the Merkle-Damg̊ard transform which is sequential. However,
we already remarked that this is not very important in practice. Instead, the main
reason Merkle Tress are extensively used in practice in the following. Assume you
have a big file F consisting of 2d blocks, and you wish to “commit” to its contexts by
publishing a collision-resistant hash of the file. For example, you want to store F on
an untrusted server, but remember the short hash value y = H(F ) of F . Now, you
want to retrieve the i-block Fi of F from the server. The server can just send you
Fi, but you do not trust the server. Alternatively, the server can send you the entire
file F , and you verify that the hash of F is y. Here the server cannot cheat, but the
protocol is very wasteful. You only wanted one short block Fi, but had to read all 2d

blocks, and recompute the entire hash function on all of F .

Merkle trees allows you to do much better. As before, you only store the hash y,
which is the root of the Merkle tree. You also let the server store the entire Merkle
tree (i.e., the hash values on all the internal nodes, which at most doubles the storage
on the server’s side). Now, the server can only send you: (a) the block Fi you want;
(b) all the internal hash values yd = Fi, yd−1, . . . , y1, y0 = y on a path from y to Fi;
(c) all the “sibling” nodes corresponding to yd−1, . . . , y0 (i.e., make sure the client
gets back both children of y0, . . . , yd−1; one child is anyway present because of (b),
but sending the sibling ensures that the second child is present too). Thus, the server
sends a total of 2d + 1 blocks, which is dramtically less than 2d. Now, the client just
evaluates little h for each of the d internal nodes on the path from Fi to y, and if all
the checks are valid, the client knows Fi is correct. This means only d evaluations
and only 2d + 1 blocks, which is logarithmic in the length 2d of the file.

To summarize, Merkle trees is extremely useful if one wants to reliably retrieve indi-
vidual message blocks from some untrusted storage, without the necessity to read the
entire file.

Global Collision Implies Local Collision. The main structural property of any tree
(including the above examples) is the following.

Lemma 1 Assume H(x) = H(x′) for some distinct x, x′ ∈ {0, 1}L. Then there is (easy
to find) internal node i of the tree (labelled by some hi ∈ H) such that: (1) it takes input
xi ∈ {0, 1}ℓ when evaluating H(x) and input x′

i ∈ {0, 1}ℓ when evaluating H(x′); (2) xi 6= x′

i;
(3) hi(xi) = hi(x

′

i). In other words, a “global collision” in H implies there exists a “local
collision” in at least one of the hi’s.

Proof: Imagine a moving “frontline”, described below, and let’s see how this frontline
evolves in the “world” W of x vs. the “world” W ′ of x′. Initially, the fronline consists of all
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the (labels of the) leaves of the tree, so that F = x in W and F ′ = x′ in W ′. By assumption
F 6= F ′ originally. At each next step, we take one internal node, adjacent to the frontline
(all its children are in the frontline), include it (or rather its label) in the frontline, but
remove its children (or rather, their labels) from the frontline. We do it until we reach the
fronline which just contains the root. Now, the final fronline is equal to the value of h′ (the
label of the root). Sicne H(x) = H(x′), the final values of the fronline are the same in W
and W ′. Thus, the fronlines were different at the beginning in W and W ′, but became the
same at the end. Hence, the must be an intermediate step, where we included some node
i in the fronline (with function hi) so that: F 6= F ′ before including i, but F ′ = F after
including i. But this literally means that the inputs xi and x′

i to hi were different (since
this is the only way for the frontline to differ originally), but the outputs of hi are the same.
This exactly means we found the local collision requested.

Concrete Examples. As we already mentioned, for our purposes we will use the same
randomly selected function h ∈ H at each node of the tree, no matter how the tree looks
like. Indeed, assuming H(x) = H(x′) for some distinct x, x′ ∈ {0, 1}L, Lemma 1 implies
that there exists some (easy to find) distinct xi, x

′

i ∈ {0, 1}ℓ so that h(x) = h(x′). Thus, if
some A can fund a collision in H (build using the same h ∈ H), one can use A to find a
collision in h itself. It turns out we get the same paramenters irrespective of which “legal”
tree we are using. For convenience, below we apply this composition to the “path”, the
“complete binary tree” (“CBT”), and their combination (first get length doubling by path,
then apply CBT).

Theorem 2 Let H be a CRHF family of fucntions from ℓ + c to ℓ bits and key length p.
Then there exists the following CRHF H′ going from L to ℓ bits, and using the same key
h of length p, where the evaluationg of H ∈ H′ takes L−ℓ

c evaluations of h. For concrete
examples,

• By using the Merkle-Damg̊ard chaining mode, we can achieve L = nc + ℓ, where
evaluation of H ∈ H′ takes n = L−ℓ

c evaluations of h ∈ H. In paricular, if c = 1 we
can get L = 2ℓ using ℓ evaluations of h.

• If c = ℓ (i.e., h goes from 2ℓ to ℓ bits), using the Merkle tree of depth d we can achieve
L = 2dℓ, where evaluation of H ∈ H′ takes (2d − 1) = L

ℓ − 1 evaluations of h ∈ H.

• Combining the above, if c ≤ ℓ, we can achieve L = 2dℓ, where evaluation of H ∈ H′

takes ℓ(2d
−1)
c = L−ℓ

c evaluations of h ∈ H. In particular, when c = 1 we use (L − ℓ)
evaluations of h : {0, 1}ℓ+1 → {0, 1}ℓ.

Corollary 2 Given a fixed CRHF H, we can make a new CRHF H′ with essentially un-
bounded input size, without increasing the key size for H′.

Variable-Lengh Inputs. So far we considered the case of a fixed tree, corresponding to
a fixed-length inputs (of length L). Just like for the case of MACs, in practice one want to
de able to handle arbitrary-length messages; i.e., M = {0, 1}∗. We restrict our attention
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to how to extend the Merkle-Damg̊ard chaining to handle such inputs, since this is what is
being used in practice.

Assume we have a collision-resistant compression function h from ℓ+c to ℓ bits. We will
assume that c ≥ log L, where L is the largest length of the message being hashed (i.e., all
messages are of length at most 2c). This is not a big restriction, since in practice c ≥ 128
(usually 512), and 2128 is larger than the number of molecules in the universe. Finally, we
will assume that input length (whatever it is) is a multiples of block size c: if not, uniquely
pad the input to make its length a multiple of c. We set the initialization vector IV to
arbitrary ℓ-bit constant (say, 0ℓ), and consider first the usual cascade construction applied
to m = m1 . . .mn, where |mi| = c:

H(m1 . . . mn) = h(mn, h(mn−1, . . . h(m1, IV ), . . .))

We immediately notice that this Merkle-Damg̊ard chaining preserves collision-resistance as
long as the inputs are encoded in a suffix-free form. Namely, no legal input m is a suffix
of another input m′. Indeed, if this is not the case, then traversing any collision backward
on any m 6= m′ eventually leads to distinct inputs colliding wr.t. h in one of the blocks:
namely, the first value j ≥ 0 such that mn−j 6= m′

n′
−j , where n and n′ are the number of

blocks in m and m′, respectively.
What if inputs are not in the suffix-free format? Well, it’s easy to make them into such

format. Simply add block mn+1 = 〈n〉: namely, add the number of message blocks as the
last block of the encoded message. Clearly, if n 6= n′, then the last block is different, and we
get suffix-freeness. If n = n′, the the last block is the same, but at least one of the message
blocks is different since m 6= m′. This is called Merkle-Damg̊ard strengthening.

H(m1 . . . mn) = h(〈n〉, h(mn, h(mn−1, . . . h(m1, IV ), . . .)))

The nice thing about this method is that one does not have to know the length of the message
n before hashing it. Simply keep counter of how many blocks you hashed so far, and when
you encounter the end of the file marker, you know n and can apply the Merkle-Damg̊ard
strengthing at this point.

To summarize, when we construct CRHFs in the next section, it suffices just to get
some level of compression, from which we can efficiently extend the domain to {0, 1}∗ via
Merkle-Damg̊ard strengthening.

4 Constructions of CRHFs

It turns out, the existence of CRHFs is a powerful and strong assumption. In particular,
we do not know how to build CRHFs from OWFs, OWPs, and even TDPs! In fact, there is
some strong theoretical indication that it is impossible to build CRHFs from general TDPs.
Luckily, we can construct CRHFs using:

• Ideal Block Ciphers. This is a heuristic construction (explained later in Sec-
tion 4.1), but is extensively used in virtually all current hash functions such as SHA-1
or MD5. So we cover it because of its widespread use and the fact that we can give
some partial theoretic justification.
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• Claw-Free Permutations. This is a very strong assumption (studied later in Sec-
tion 4.2), much stronger than TDPs, for example. Luckily, we can build simple claw-
free permutations (CFPs) from all the number-theoretic assumptions we studied so
far, including RSA, factoring and discrete log. In particular, this shows how to build
CRHFs from all these number-theoretic assumptions.

• Number-Theoretic Assumptions. We already mentioned above that one can build
CFPs, and thus, CRHFs, from all the number-theoretic assumptions we studied so far,
including RSA, factoring and discrete log. However, in each of these cases one can
build more efficient CRHFs but going into the specifics of number theory. This is
briefly mentioned in Section 4.3.

To summarize, although the existence of CRHFs is a strong assumption, we can build
them effiicently using a variety of techniques, which means that in the sequel we will freely
use CRHFs.

4.1 Construction from Ideal Cipher

In practice, suprisingly enough, CRHFs are built from block ciphers. Let Es(x) denote a
block cipher with key x and input x, and E−1

s (y) denotes the corresponding inverse. We let
|x| = |y| = n and |s| = k. The following construction, called Davies-Meyer constrcution, is
used quite extensively for most practical hash functions, including SHA and MD5 (the latter
recently broken). It builds the following compression function h : {0, 1}n+k → {0, 1}n:

h(s, x) = Es(x)⊕ x

The claim is that the DM construction is a good CRHF “in practice”. Namely, it is infeasible
to find (s, x) 6= (s′, x′) s.t. Es(x) ⊕ x = Es′(x

′) ⊕ x′. This claim might seem puzzling at
first, and for a good reason. First, we said that it is unlikely we can construct CRHFs from
OWFs, and we know (via Luby-Rackoff) and block ciphers can eventually be built from
OWFs. More seriously, we see that the construction does something “un-kosher”: the secret
key s for the block cipher is simply an input to h can be chosen by the attacker trying to find
collision! Indeed, it is easy to construct an artificial PRP for which the DM construction
is insecure. I.e., assume E0(0) = 0 and E1(1) = 1. This does not contradict the PRP

assumption, since it is very unlikely that a random key s will be 0 or 1. Thus, indeed, we
can never prove security assumpting that our block cipher E is “only” a PRP.

Nevertheless, in practice people try not to chose block cipher with intentionally “weak”
keys, like the artificial counter-example above. In fact, ideally, we hope that a good block-
cipher should behave like a random permutation for every key. Unfortunately, this assump-
tion is too strong, and it is hard to make it formal: once the code of the block cipher is
fixed, it is not random for every key. In fact, for every particular key the permutation is
fully determine. Still, in practice the cipher seems to be “good enough” to avoid any “silly
counter-examples” like above.

Because of these considerations, theoreticians and practitioners converged on the fol-
lowing abstract model of block ciphers, called the ideal cipher model (ICM). The best way
to imagine the ICM to to pretend that there exists a trusted third party Zak, who chose
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in his head 2k truly random permutations on n bits, Es(·)/E−1
s (·), for every s ∈ {0, 1}k.

Now, whenever a party — either honest one (like Alice and Bob), or malicious (like Eve)
— need to compute Es(x) or E−1

s (y), they simply ask Zak, and he gives them the answer.
Notice, this makes perfect mathematical sense, and will allow us to prove theorems about
the ICM. On the other hand, in practice there is no Zak, and people simply use a good
enough block cipher, like AES. And the hope is that the block cipher is so good, that no
party — even Eve — can do much more than honestly evaluate it on a bunch of points,
and more or less assume that the result will be totally unpredictable. i.e., despite having
the code of E, Eve cannot underastand the complexity of the code and can only run the
primitive forward/backward, always expecting a random(-looking) result.

DM is Collision-Resistant in ICM. If this was too abstract, let us semi-formally argue
the collision-resistance of the DM construction in the ICM.

Theorem 3 h(s, x) = Es(x)⊕ x is a collision-resistant hash function in the ICM.

Proof: Assume there exists an attacker A, who expects oracle access to E·(·), E−1
·

(·) (i.e.,
can chose both the key and the input/output), and find a collision (s, x) 6= (s′, x′) for h with
probability ε. We will prove that ε must be low, using an information-theoretic argument
(this is possible because we are using ICM!). We do a sequence of games, and let pi be the
probability the attacker still finds collision in Game i.

• Game 0. The orginal game between A and Zak, who chose a totally random ideal
cipher.

• Game 1. This is lazy Zak, but otherwise the same as non-lazy Zak. Namely, instead of
choose the cipher in full at the beginning, he defines it incremetally, as requested by A.
He keeps a table T of tuples (s, x, y, z), which correspond to defined values Es(x) = y
(and E−1

s (y) = x), where for conveneince Zak also stores z = x ⊕ y. Initially T is
empty (nothing defined), but T grows with each query of A. Namely, for forward
query (s, x), if a tuples (s, x, y, z) is in the table, give back z. (Same for backways
query (s, y), returning x.) But if such tuples is not there, choose a random y distinct
from all y′ already defined for the same key s (i.e., if Es(x

′) = y′, then exclude y′ from
consideration). Same for E−1

s . Obviously, p1 is still ε, since this is the same game.

• Game 2. Identical to Game 1 above, except Zak does not exclude any y when defining
a random forward query (or x for backward query). If A makes q queries, for each such
query Zak could only run in trouble (violating permutation structure) with probability
at most q/2n, so the total probability of him running into trouble after all queries is
at most q2/2n. Thus, |p2 − p1| ≤ q2/2n.

• Game 3. Identical to Game 2 above, except Zak checks if the new values zi that he
puts in the table “for fun” ever collide. If so, he stops and loses the game. For each
new forward query (s, x) or backward query (s, y) which defines a new z, we notice
that z is defined at random: either one chooses random y and sets z = x ⊕ y, or
chooses random y and again sets z = x ⊕ y. Thus, the chance that any of the z’s
repeat is simply a birthday bound q2/2n. Hence, |p3 − p2| ≤ q2/2n.
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• Game 4. Identical to Game 3 above, except when A outputs a claimed collision
(s, x) 6= (s′, x′), we make sure that we already defined the values Es(x) and Es′(x

′).
I.e., that T contains tuples (s, x, y, z) and (s′, x′, y′, z′) for some y, z, y′, z′. If this is
not so, pretend that A asks Zak (from Game 3) to evaluate these two more queries for
him. Clearly, this is the same as Game 3, except Zak could “screw up” answering the
last two queries, which happens with probability 4q/2n (each query can mess up with
probability at most q/2n, by the analyses of Games 2 and 3). Hence |p4−p3| ≤ 4q/2n.

But now, let us argue that p4 = 0. Indeed, in Game 4 both inputs (s, x), (s′, x′) have
two distinct entries in T , for which z and z′ are distinct (by Game 3). Thus,

h(s, x) = Es(x)⊕ x = x⊕ y = z 6= z′ = x′ ⊕ y′ = Es(x
′)⊕ x′ = h(s′, x′)

Tracking back, we see that ε = p0 ≤ (2q2 + 4q)/2n, which is negligible.

We saw that the above ICM proof was information-theoretic, despite the fact that CRHFs
imply OWFs. This is because ICM model is very strong and should be used with extreme
caution!

4.2 Construction from Claw-Free Permutations

We now turn to constructions in the standard model. W estart with a general construction.
It uses a notion of claw-free permutations. We define them below

Definition 2 A family of functions F = {(f0,PK , f1,PK) :M(PK)→M(PK)} generated
by Gen is called a family of claw-free permutations (CFPs) if (a) f0,PK , f1,PK are efficiently
computable permutations for any PK; and (b) for any PPT attacker A,

Pr[x 6= x′ ∧ f0,PK(x) = f1,PK(x′) | PK ← Gen(1k), (x, x′)← A(PK, 1k)] ≤ negl(k)

♦

Notice, we will omit PK from our notation, to avoid messiness, and also assume |M| ≈
2n for concreteness. Before giving examples of CFPs, let us right away construct a CRHF

from a family of CFPs {(f0, f1)}. Given any (fixed, but possibly huge) parameter L, view
the message M as a pair (x, m), where x ∈M and m = m1 . . . mL, and let

h(x, m) = fmL
(. . . fm2

(fm1
(x)) . . .)

We claim that h is a CRHF from roungly L + n bits to n bits. In particular, it already
compresses for L = 1. Also notice we can process the input in an on-line manner. Now,
take any two messages (x, m) 6= (x′, m′) and assume h(x, m) = h(x′, m′) = z. We have two
cases:

Case 1: Assume m = m′. Notice, although f−1
0 and f−1

1 might not be efficient, they are
well defined mathmatically. In particular, x = f−1

m1
(. . . f−1

mL
(z) . . .), x′ = f−1

m′

1

(. . . f−1
m′

L

(z) . . .).

Thus, if m = m′, we get x = x′ as well.
Case 2: Assume m 6= m′. Let i be the smallest index such that mi 6= m′

i (but mj = m′

j

for j > i). Say, mi = 0, m′

i = 1. Let z′ = f−1
mi+1

(. . . f−1
mL

(z) . . .), x0 = fmi−1
(. . . fm1

(x) . . .),
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x1 = fm′

i−1
(. . . fm′

1
(x) . . .). Then, f0(x0) = z′ = f1(x1), so (x0, x1) form a claw (which is

efficiently computable, see above formula).
Notice, the construction easily generalizes for any suffix-free messages. Thus, by append-

ing a block containing 〈L〉, we can maintain suffix-freeness, and still preserve the on-line
nature of the function!

Examples of CFPs. We now argue that standard one-way permutation constructions, such
as exponentiation mod p, squaring mod n, and RSA, easily yield CFPs. We demondtrate
it for exponentiation, leaving the other two cases as simple exercises (done analogously to
exponentiation).

The public key PK here consists of a prime p, a generator g of any subgroup G of
Z
∗

p (including Z
∗

p itself) where discrete log is hard, and a random element y ∈ G. We
define f0(x0) = gx0 mod p, and f1(x1) = y · gx1 mod p. Now, if f0(x0) = f1(x1), then
gx0 = ygx1 mod p, meaning that y = gx0−x1 mod p, meaning that (x0− x1) is a discrete log
of y. Since y was random, it should be hard to compute discrete log of y. Thus, it must be
infeasible by the attacker to compute x0, x1 above.

Notice, this construction is elegant, but very inefficient: it roughly requires an exponen-
tiation per bit of the input. Also, for G = Z

∗

p, we indeed have compression starting from
L = 1. However, for smaller subgroups G, the output is an element of G, and it might not be
easy to compress it to log |G|. Thus, we prefer to either use Z

∗

p itself, or let p = 2q + 1, and
consider the prime order q subgroup of quadratic residues mod p (like we did for ElGamal).
This is compressing for any L ≥ 2, and can be made compressing even for any L = 1 using
the bijection between QR(p) and Zq we introduced in the lecture covering the ElGamal
encryption.

4.3 Optimized Constructions using Number Theory

We can optimize the above generic construction using the specific algebraic properties of
concrete one-way permutations, such as exponentiation and RSA. We only do it for the
former, mentioning that the other examples can also be optimized.

Construction from Discrete Log. For that, let us recall the CFP construction based
on the discrete log, and let us look at it when L = 1. In this case, the input to h is a message
consisting of a bit b and an integer x ∈ {1 . . . |G|}, and the output is h(b, x) = ybgx mod p
(yielding gx for b = 0 and ygx for b = 1). For elegancy sake, we will only consider the cases
G = Z

∗

p, in which case the output lies in Z
∗

p ≡ Zp−1, and G = QR(p), where p = 2q + 1 and
q is prime, in which case we can compress the output to lies in QR(p) ≡ Zq.

Looking at the formula above, one may wonder why we restrict b to be a bit. Indeed,
let us not assume that b is a bit, and see if we can argue if ybgx mod p is a CRHF. Take
any (b, x) 6= (b′, x′) such that ybgx = yb′gx′

. This means yb−b′ = gx′
−x. Now, if b = b′, then

x = x′, so we conclude that b 6= b′. We would then like to conclude that the discrete log of
y is equal to (x′ − x) · (b − b′)−1 mod |G|. But this is only true if b − b′ is relatively prime
to |G|. For G = Z

∗

p, |G| = p − 1, which is composite, so we cannot elegantly conclude that
(b−b′) is invertible. There are ways to deal with this problem, but they are messy. Instead,
we will look at the simpler case of G = QR(p), where p = 2q + 1. In this case, |G| = q is
prime, so we can indeed compute the discrete log of y as (x′ − x) · (b− b′)−1 mod q.
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In particular, we can make both x, b ∈ Zq. However, the result will be more “symmetric”
if we rename x, b into x1, x2 and g, y into g1, g2. We get the following elegant family of two-
to-one CRHF. Choose random k-bit prime p = 2q + 1, where q is prime. Let G = QR(p),
and notice that G ≡ Zq (with efficient mapping both ways, see ElGamal lecture). Under
this isomporphism, define the following hash function hp,g1,g2

: Z
2
q → Zq. The public

key of h consists of p and two random generators g1, g2 ∈ G. Then, for x1, x2 ∈ Zq, let
hp,g1,g2

(x1, x2) = gx1

1 gx2

2 mod p (with the result in G mapped back to Zq).

Theorem 4 H = {hp,g1,g2
} above is a two-to-one CRHF from roughly 2k to k bits, under

the discrete log assumption.

Notice, one can naturally extend the compression ratio to t-to-1 of this construction,
by using more generators g1 . . . gt (homework?). Also, one can have similar optimized
constrctions for the RSA and squaring functions.

Direct construction from factoring. Of course, there are other constructions of
CRHFs. Here we mention one simple one, based on factoring. Here one chooses the modulus
n = (2p + 1)(2q + 1). Also, as part of the public key, one chooses a random y ∈ QR(n).
Notice, |Z∗

n| = 2p · 2q = 4pq, and |QR(n)| = |Z∗

n|/4 = pq. Thus, the order of y is pq
(with high probability). Now, we define the following functions h over the integers m ∈ Z:
h(m) = ym mod n. Now, if h(a) = h(b), and a 6= b, then a − b must divide pq, which is
the order of y, and be different from 0 (since a 6= b). Hence, 4(a − b) must divide ϕ(n).
However, it is well known that a non-zero multiple of ϕ(n) is enough to factor n.

5 Digital Signatures

The remainder of this lecture is dedicated to public-key signature schemes (PKS), which
are the public-key counterparts of the message authentication codes (MAC) that we studied
earlier.

Motivation and intuition. The use of signatures as a form of authentication in the ”real
world” is very old and widespread. It is based on the assumption that it is very hard to
emulate one’s handwriting well enough or to modify a document so that differences cannot
be detected. If one accepts that, signing is then a very efficient way of ensuring that a given
public document bears one’s approval.

”Physical” signatures must be reproducible by the signer (that is, every person must
have a definite procedure for signing as often as needed) and recognizable by others (also by
means of some definite procedure) . Their usefulness comes from the fact that lots of entities
(e.g. the government, banks, credit card companies, family and friends) can recognize what
one’s signature looks like (i.e. one’s signature is known by the public) and yet they cannot
forge it.

In this class we discuss the computational counterpart of ”physical” signatures, which
are called digital signatures. Those are intended to provide the sender with the means to
authenticate his/her messages (here understood to be any information he/she intends to
make available to the world) in a way that can be checked by anyone but that cannot be
copied by others.
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The message authentication codes (MAC) that we studied last class do not quite fit into
the niche of digital signatures. For they are secret-key authentication schemes and implicit
in that concept is that all parties that share the secret information (which is necessary
for authenticity verification) must be trustworthy if one does not want to lose all hope for
security. It is then clear that anything that deserves the name digital signature should be
a public-key authentication scheme: even people in which one does not trust completely
should be able to check the authenticity of one’s signature. That is, one does not want
to impose any restrictions on the parties that may want to verify the authenticity of one’s
signature. Of course, the signing algorithm must use secret information (that is, a secret
key), which roughly corresponds to one’s unique way of signing.

5.1 Basic Definition

In this subsection we define the notion of a public-key signature scheme as a public-key
analog of MAC and then present a definition of security for it. M is the message space (e.g.
M = {0, 1}k orM = {0, 1}∗).

Definition 3 [Public-Key Signature Scheme] A Public-Key Signature Scheme (PKS)
is a triple (Gen,Sign,Ver) of PPT algorithms:

a) The key generating algorithm Gen outputs the secret (private) and verification (public)
keys: (SK, V K)← Gen(1k).

b) The message signing algorithm Sign is used to produce a signature for a given message:
σ ← SignSK(m), for any m ∈M.

c) The signature verification algorithm checks the correctness of the signature: VerV K(m, σ) ∈
{accept, reject}

The correctness property must hold: ∀m, VerV K(SignSK(m)) = accept. ♦

Remark 1 One can also consider stateful PKS; we shall encounter those towards the end
of the lecture.

Remark 2 We shall adopt the convention that V K is a substring appended at the end of
SK (i.e. SK contains in V K) whenever this is useful. Of course, this entails no loss of
generality.

As in the case of a MAC, we can consider the notions of existential or universal unforge-
ability against V K-only, random-message or chosen-message attacks. To assume that an
adversary might be able to query the receiver of the messages to check the validity of given
pairs (m, σ) makes no difference in the present case, as long as the adversary has the public
key, he can test that by himself. Therefore, the natural counterpart of the standard notion
of security for MAC in the present context is:

Definition 4 [Standard notion of security for PKS] A PKS (Gen, Sign, Ver) is said to be
secure, that is, existentially unforgeable against chosen-message attack (CMA) if for all PPT

A we have that

Pr(Ver(m, σ) = accept | (SK, V K)← Gen(1k), (m, σ)← ASignSK (V K)) ≤ negl(k)
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where A cannot query the oracle SignSK on the message string m it outputs. ♦

Weaker Notions. We will also study weaker notions of signatures as we try to satisfy
the ambitious definition above. They vary according to the attack capabilities and the goal
of the attacker:

• Capabilities of A. Currently A is capable of launching chosen message attack:
i.e., he has unrestricted access to the signing oracle. We can place a restriction of the
number of times q thatA is allowed to call the signining oracle. Currently, q = poly(k).
If q = 0, we get no message or V K-only attack. When q = 1 (this is an important
case we study later), we get what is called one-time signature: the signer can securely
sign at least one message and be sure no other signature can be forged. One can also
restrict adaptivity of A (i.e., A cannot select the messages whose signature he sees,
or has to select all messages at once), but we will not study these variants.

• Goal of A. Currently, the goal of A is existential unforgeability. Namely, A succeeds
as long as he forges a new signature, irrespective of hoe “ridiculous” the message m
he is forging is. A more ambitious goal is to forge a signature of any given mes-
sage with non-negligible probability. There are two flavors of it. More formally, A is
given a random message and succeeds if he can sign this message with non-negligible
probability. A signature scheme secure against this variant is called universally un-
forgeable. Clearly, existential unforgeability is much more desirable than universal
unforgeability.

5.2 “Hash-then-Sign” Method

We develop the following simple “hash-and-sign” method, which illustrates that, using
CRHFs, we only need to construct secure signature schemes on “short” domains, and auto-
matically get secure signatures on “long” domains. The lemma below work for both regular
(“many-time”) and one-time signature scheme: the former case being extensively used in
practice, and the latter will be used by us in the the Naor-Yung construction from the next
lecture. For concreteness, the rpoofs below is for regular (multi-time) signature scheme,
since the one-time case will be a special case.

Lemma 3 (Secure schemes with CRHF) If H = {hs} is a CRHF and SIG′ = (Gen′, Sign′, Ver′)
is a (one-time) secure signature scheme for ℓ-bit messages, then the signature scheme
SIG = (Gen, Sign, Ver) defined below is (one-time) secure for L-bit messages:

a) SK = SK ′, V K = (V K ′, h), where (SK ′, V K ′)← Gen′(1k) and h← H.

b) SignSK(m) = Sign′SK′(h(m)).

c) VerV K(m, σ) = Ver′V K′(h(m), σ).

Proof: Assume that Lemma 3 is false for some SIG′, that is, there exists an adversary A
such that

Pr(Ver′SK′(h(m), σ) = 1 | (SK ′, V K ′)← G(1k), h← H, (m, σ)← ASign
SK′ (V K ′, h)) = ε
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where A queried the oracle on messages m1 . . .mt, and, when successful, outputs the sig-
nature σ of m 6∈ {m1, . . . , mt}. Then at least one of the following events happens with
non-negligible probability ε/2:

(a) h(m) ∈ {h(m1), . . . , h(mt)}.

(b) h(m) 6∈ {h(m1), . . . , h(mt)}.

In case (a), we can break the collision-resistance property of H. Indeed, it implies that
for some i, h(m) = h(mi), while by assumption m 6= mi, so m and mi form a collision.
In case (b), we break the security of our original signature SIG′. Indeed, h(m) is a “new
message” w.r.t. SIG′, since A only saw Sign(mi) = Sign′(h(mi)), so A managed to forge a
new signature. Translating this into a formal proof (i.e., building the actual B breaking
SIG′) is straightforward. Indeed, B picks its own h ← H, and simulates oracle calls to
Sign(mi) by oracle calls to Sign′(h(mi)). When A forges (m, σ), B outputs its own forgery
(h(m), σ).

6 Advanced: Universal One-Way Hash Functions

This material is optional and was not covered in class. You can skip it and move
to the next lecture.

Definition 5 A family of functions H = {hPK :M(PK) → R(PK)} generated by Gen

is called a family of universal one-way hash functions (UOWHFs) if (a) |M| > |R|, (b) hPK

is efficiently computable for any PK, and (c) for any PPT attacker A = (A1, A2),

Pr[x 6= x′ ∧ hPK(x) = hPK(x′) | (x, st)← A1(1
k), PK ← Gen(1k), x′ ← A2(PK, st)] ≤ negl(k)

♦

6.1 “Hash-then-Sign” with UOWHFs

Lemma 4 (Secure schemes with UOWHF) If H = {hs} is a UOWHF and SIG′ = (Gen′, Sign′, Ver′)
is a (one-time) secure signature scheme for (ℓ + p)-bit messages, then the signature scheme
SIG = (Gen, Sign, Ver) defined below is (one-time) secure for L-bit messages:

a) SK = SK ′, V K = V K ′, where (SK ′, V K ′)← Gen′(1k).

b) SignSK(m) = (h, Sign′SK′(h ◦ h(m)), where h← H and ◦ is concatenation.

c) VerV K(m, (h, σ)) = Ver′V K′(h ◦ h(m), σ).

Proof: Assume that Lemma 4 is false for some SIG′, that is, there exists an adversary A
such that

Pr(Ver′SK′(h ◦ h(m), σ) = 1 | (SK ′, V K ′)← G(1k), (m, (h, σ))← ASign
SK′ (V K ′)) = ε

where A queried the oracle on messages m1 . . .mt, and, when successful, outputs the signa-
ture (h, σ) of m 6∈ {m1, . . . , mt}. Let also (hi, σi) denotes the signature of mi returned by
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the oracle (i.e., each hi is truly random, even though h used in the forgery could be chosen
by A arbitrarily). Then at least one of the following events happens with non-negligible
probability ε/2:

(a) h ◦ h(m) ∈ {h1 ◦ h1(m1), . . . , ht ◦ ht(mt)}.

(b) h ◦ h(m) 6∈ {h1 ◦ h1(m1), . . . , ht ◦ ht(mt)}.

In case (a), we can break the universal one-wayness property of H. Indeed, it implies that
for some i, h = hi and thus hi(m) = hi(mi), while by assumption m 6= mi. Thus, if we set
x0 = mi, we get that h = hi was chosen at random after x0 was chosen by A, and we can
set x1 = m, thus creating a collision x0 6= x1 for this randomly selected hi. Translating this
into a formal proof is easy and is omitted.

In case (b), we break the security of our original signature SIG′. Indeed, h ◦ h(m) is a
“new message” w.r.t. SIG′, since A only saw Sign′(hi ◦hi(mi)), so A managed to forge a new
signature. Translating this into a formal proof (i.e., building the actual B breaking SIG′) is
straightforward. Indeed, B simulates oracle calls to Sign(mi) by picking a random hi ← H
and, getting σi = Sign′(hi ◦ hi(mi)) from its own oracle, and returning (hi, σi). When A
forges (m, (h, σ)), B outputs its own forgery (h ◦ h(m), σ).

6.2 Composition for UOWHF’s

The situation is a bit more difficult with UOWHF’s. The reason is the following. Assume
H′ (build from H using some tree, where we are not specifying yet how to select the hi’s)
is not a UOWHF. Then some A can specify x ∈ {0, 1}L, and after h′ ∈ H′ is selected, A
can collisde x with some x′. We would like to construct B that breaks the fact that H
is UOWHF. First, B must select some xi ∈ {0, 1}ℓ before h = hi is selected. Probably, B
should use A to get x ∈ {0, 1}L. The question is: how to use x to produce the needed xi?
If B randomly selects h′, then it can use A to find a local collision (xi, x

′

i) to some hi ∈ H
(by Lemma 1). But then it’s too late: h = hi is already selected, and B has to compute xi

before hi is selected. Well, B can guess the internal node i that will produce the collision
(and has non-negligible chance of being correct). Thus, if B can use x to compute the input
xi to the hi without selecting hi yet, we will be done. But if we use the same h at all nodes
i, B cannot compute this xi since it will have to select h = hi for that!

On the other extreme, if all the hi are independently sampled from H, B can succeed
with ease. Indeed, it only selects the random h’s that are needed to compute the input
to hi, without yet selecting hi. This way it can compute xi, then when a random h is
selected, it can set hi = h, select the remaining functions, and then use A with Lemma 1
to find the collising x′

i (provided its guess for i is correct). The argument above is correct,
but the reduction is very wasteful in terms of the key: for each internal node i we have
to choose a new hi! Can we do better? The answer is positive. Notice, in the argument
above we only ran into trouble if the same h was used between a node i and some of its
descendant j: hi = hj . In this case, if i was the local node “resposible” for the “global”
collision, computing the input xi to node i (from the global input x) requires to compute
hj = hi along the way. And B cannot do this since hi cannot be selected as of yet. On the
other hand, if no node shares the same seed with its descendant, we can easily complete the
argument, as before.
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This suggests the following more efficient way to select h’s. Assume our tree has depth
d. Then we must1 use at least d distinct independent h’s. On the other hand, d such h’s
indeed suffice: simply use a different h at each level of the tree, and let all the nodes at
depth i use the same hi. We get

Theorem 5 Let H be a UOWHF family of fucntions from ℓ1 to ℓ bits and key length p.
Assume H′ from L to ℓ bits is constructed from H by using a “legal” tree T of depth d
by selecting an independent function hi for each level of T . Then H′ is a UOWHF family
with key length p′ = dp, where evaluation of h′ takes (L− ℓ)/(ℓ1− ℓ) evaluations of various
hi ∈ H. For concrete examples,

• If ℓ1 = ℓ+ c for some c > 0 and T is a path of depth n, we can achieve L = nc+ ℓ and
p′ = pn = p(L−ℓ)

c , where evaluation of h′ ∈ H′ takes n = L−ℓ
c evaluations of h ∈ H.

In paricular, if c = 1 we can get L = 2ℓ, p′ = ℓp using ℓ evaluations of h.

• If ℓ1 = 2ℓ and T is a CBT, we can achieve L = 2dℓ and p′ = dℓ, where evaluation of
h′ ∈ H′ takes (2d − 1) = L

ℓ − 1 evaluations of h ∈ H.

• Combining the above, if ℓ1 = ℓ + c, we can achieve L = 2dℓ, and p′ = pℓd
c = pℓ log(L/ℓ)

c

where evaluation of h′ ∈ H′ takes ℓ(2d
−1)
c = L−ℓ

c evaluations of h ∈ H.

The above result says that if two trees T1 and T2 yield the same output length L, we
should select (provided we use our technique) the tree with smaller depth. More precisely,
given ℓ, ℓ1 and L, we should select the smallest depth “legal” tree with this parameters. It
is easy to see that d = Ω(log L/ℓ) (proof omitted), so the last item in Theorem 5 is nearly
optimal. In fact, we mainly care about the dependence of our key size on the input length
L (in applications, ℓ1, ℓ and p can be thought as fixed). Thus, the optimal dependance of
of d on L is logarithmic. We summarize this in

Corollary 5 Given a fixed UOWHF H with fixed parameters ℓ1, ℓ, p, we can build a UOWHF

H′ with input size L and output size ℓ, so that the key size p′ of H′ grows proportionally to
log L.

We remark that the above composition of UOWHF’s is not the best that one can do,
but it is nearly optimal, and certainly good enough for our purposes.

6.3 Construction of UOWHF

It turns out that UOWHF’s are equivalent to OWF’s. The fact that they imply OWF’s is left
as a homework. The converse implication from OWF’s is more interesting, but also much
more difficult. We will give a simpler construction from OWP’s instead. As we stated, the
construction will shrink by only 1 bit: L = k, ℓ = k − 1. Even that will be non-trivial, but
we will later see how to have a better tradeoff.

So let f be a fixed OWP (or, more generally, it can be chosen at random from a family
of OWP’s and fixed). We will use the following auxiliary function family Chop = {ga :

1Meaning if we want to follow this specific proof technique. Of course, there could be, and in fact there

are, other composition techniques for UOWHF’s.
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{0, 1}l → {0, 1}k−1}. This family will be defined over the finite field F having 2k elements
(if this is too abstract, you can think for of F as being Zp, where p is some k-bit prime).
Here each function ga,b will be given by a non-zero element a ∈ F\{0}, and will be defined
as ga(y) = chop(ay), where ay is computed in F (and takes k bits to represent), while
chop(ay) simply deletes the last bit of the representation of ay, thus truncating it to the
needed (k − 1) bits. This might seem complicated, but we will only be using the following
two elementary properties of the family Chop.

(1) For every z ∈ {0, 1}k−1, and every ga ∈ Chop, there are exactly two distinct points
y0 and y1 such that ga(y0) = ga(y1) = z.

(2) The following, very strange method, nevertheless select a uniformly random function
ga ∈ Chop. First, fix any adversarilly chosen value y0 ∈ {0, 1}k. Then select y1 at
random. Next, choose a at random, but subject to ga(y0) = ga(y1). More precisely,
if y0 = y1, choose random non-zero a, else set a = 1/(y0 − y1). Output ga as your
function.

To verify (1), notice that y0 = z0/a and y1 = z1/a, where z0 and z1 are completions of
z corresponding to the chopped bit being 0 or 1. Thus, all the functions ga are 2-to-1. To
verify (2), first notice that ga is uniform provided the unlikely event y0 = y1 happens (in
any event, we can ignore this event since it happens with negligible). Else, if y0 6= y1, we
get a = 1/(y0 − y1) is also random and non-zero since (y0 − y1) is random and non-zero.
To see that the latter indeed has ga(y0) = ga(y1), notice that chop(ay0) − chop(ay1) =
chop(ay0 − ay1) = chop(1) = 0.

Now we can construct our UOWHF H = {ha : {0, 1}k → {0, 1}k−1}, where ha(x) =
ga(f(x)) (recall that f is a OWP).

Theorem 6 H above is a UOWHF.

Proof: Assume H is not a UOWHF. Thus, there exists x0 ∈ {0, 1}k and an adversary
A, such that when a 6= 0 is selected at random, A(x0, a) outputs x1 6= x0 such that
ga(f(x0)) = ga(f(x1)) with probability ε.

Using this A, we construct B that inverts our OWP f . B gets an input y = f(x) for a
randomly chosen (unknown) x. B sets y0 = f(x0) and y1 = y. Then B uses property (2)
above to sample the function ga subject to ga(y0) = ga(y1) = z. Notice, since x was random
and f is a permutation, then y1 = y = f(x) is random as well, and hence by property (2)
we get that a is random, as is expected by A. Now B runs x1 ← A(x0, a). By assumption,
with probability ε we indeed have ga(f(x1)) = ga(f(x0)) = ga(y0) = ga(y1) = z. Since
x0 6= x1 and f is a permutation, we have that y0 = f(x0) 6= f(x1). But by property (1), ga

has only two preimages of z: namely, y0 and y1. Since f(x1) is also a preimage of z and is
different from y0, it must be equal to y1. Thus, f(x1) = y1 = y, so x1 = x indeed.

6.4 Comparing CRHF’s and UOWHF’s

From what we have seen, we can compare the pros and cons of using CRHF’s vs. UOWHF’s.
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1. UOWHF’s are equivalent to OWF’s, while CRHF’s probably form a stronger assumption
of their own. Thus, basing something of UOWHF’s is more general.

2. CRHF’s give a more efficient hash-then-sign method, since the hash function does not
have to be signed.

3. CRHF’s are easier to compose than UOWHF’s. Namely, the same h can be used all
the time. While UOWHF’s require the key to grow (only logarithmically though) with
the length of the message hashed. Combined with the previous point, this gives even
more preference to hash-then-sign using CRHF’s.

4. Most number theoretic assumption that we use for constructing OWF’s (like factoring
or discrete log) actually suffice for provably secure CRHF’s as well.

5. In practice, people use a single hash function (like MD5 or SHA-1) and hope “it is
collision-resistant”. Thus, in practice people anyway assume that what they are using
is a “collision-resistant function”.

To summarize, in theory the distinction is very important, while in practice assuming
CRHF’s is OK.
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This lecture is dedicated to constructions of digital signature schemes. Assuming the
exisitence of CRHFs (or UOWHFs), we know that it is sufficient to construct signature
schemes for fixed-length messages (at least as long as the security parameter). However, we
will see that such constructions are not easy. We start with an educational construction,
based on trapdoor permutations. This construction will be insecure. In fact, it’s insecurity
will suggest — incorrectly — that it might be impossible to construct a secure signature
scheme. Luckily, this conclusion, known as “signature paradox”, will turn out to be wrong.
We will then construct one-time signature schemes, which will allow one to sign at most one
message. Then, we give Naor-Yung construction, which shows how to extend a one-time
signature into a regular-signature. The construction will crucially use the “hash-then-sign”
paradigm, but will be somewhat inefficient. Finally, we will move to more practical secure
signature schemes. For that, we will introduce the random oracle model, and show how to
revive the originally doomed “trapdoor signature” scheme in this model. This scheme is
called full domain hash, and is extensively used in practice.

1 Examples and problems

The purpose of this section is twofold. First, we show how signature schemes that are
“somewhat secure” can be designed using trapdoor permutations. Second, by showing that
these schemes fail to meet the security standards we set for signatures, we give evidence
that designing secure signatures is hard, if possible at all. We also present a convincing but
thankfully fallacious “proof” of the non-existence of secure signature schemes.

1.1 Examples: trapdoor signature schemes

The subject of this section is a way of building signature schemes from trapdoor permuta-
tions.

RSA Signature. The idea behind this scheme is the following. We use the inverse of
the RSA function to produce the signature σ = RSA−1(m) from the message m, and those
interested in checking it just compute RSA(σ) and compare it with m. More precisely (using
the notation in the definition of PKS ):

a) SK = (p, q, d) and V K = (n, e) where p, q are random k-bit primes, n = pq is the
RSA modulus, e ∈ Z

∗

ϕ(n) is the RSA exponent and d = e−1 mod ϕ(n).

b) SignSK(m) = md mod n (where m ∈ Z
∗

n).

c) VerV K(σ) = [σe = m mod n] (where σ ∈ Z
∗

n).
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A V K-only attack cannot result in universal forgery with non-negligible probability un-
der the RSA assumption though the following reasoning. Because a successful universal
forgery would enable one to find RSA−1(m) of any (and, thus, of a random) m with proba-
bility ε, contrary to the RSA assumption. This implies that under the RSA assumption this
scheme is universally unforgeable against V K-only attack.

Rabin Signature. The idea used in the previous scheme is again used, only substituting
the modular squaring function for RSA. That is,

a) SK = (p, q, g, h) and V K = n where p, q are random k-bit primes, g generates Zp, h
generates Zq and n = pq is the modulus.

b) SignSK(m) =
√

m ∈ Z
∗

n (where m ∈ Z
∗

n and any of the four square roots will do).

c) VerV K(σ) = [σ2 = m] (σ ∈ Z
∗

n).

The same argument given for RSA proves that this PKS is universally unforgeable against
V K-only attacks under the factoring assumption, and therefore even more believable than
RSA.

Signature based on any Trapdoor Function. It turns out that the above construc-
tions can be generalized for an arbitrary trapdoor function f with trapdoor information t
(technically, a family of trapdoor functions with an efficient generation algorithm for (f, t))

a) SK = (f, t) and V K = (f).

b) SignSK(m) = f−1(m), computed using t.

c) V erV K(σ) = [f(σ) = m].

The previous two examples can be easily put into that framework. We now present a
general theorem on the unforgeability of trapdoor signatures.

Theorem 1 ((In)Security of Trapdoor Signatures against V K-only attack) If f is
a trapdoor family, then the corresponding trapdoor signature scheme is universally unforge-
able against V K-only attack, but existentially forgeable against V K-only attack.

Proof: We prove the first assertion by contradiction. Suppose that f is a trapdoor but the
corresponding signature scheme does not have the desired property. That means that there
exists some PPT A such that with non-negligible probability ε = ε(k)

Pr(SignSK(m) = σ | (SK, V K)← Gen(1k), m←Mk, σ ← A(m)) = ε

Since SignSK = f−1 and VerV K = f , we can rewrite this as Pr(m = f(σ) | m ←Mk, σ ←
A(m)) = ε. Moreover, since f is a permutation, if x ∈ Mk is random then m = f(x) is
random, and therefore Pr(f(x) = f(σ)|x← Mk, σ ← A(f(x))) = ε. Therefore, A inverts f
with non-negligible probability, which contradicts the fact that f is a trapdoor permutation.

For the second assertion, notice that a PPT adversary B who on input V K outputs
(f(σ), σ) (for some “signature” σ he picks) always succeeds in his attack (i.e., σ is a signature
of “message” f(σ)).
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Also, it turns out that in some special cases a trapdoor signature may be universally
forgeable under the CMA. Consider, for example, trapdoor families for which for all k,Mk

is a group and f : Mk → Mk is a group homomorphism. In that case, it is easy for an
adversary to find out σ = SignSK(m) for any m ∈ Mk without a direct oracle query for
SignSK(m). Indeed, for m = 1 (i.e. the identity element) we have that σ = 1, and for m 6= 1
it suffices to pick any m1 ∈ Mk that is not 1 or m, then compute m2 = m

m1
(which also

different from the identity and from m). The adversary can find out σ1 = SignSK(m1) and
σ2 = SignSK(m2) by oracle calls and compute σ = σ1σ2. This shows that such trapdoor
families, RSA and Rabin among them, are universally forgeable against chosen-message
attacks.

It should be clear by now that the design of “secure” signature schemes is a difficult
problem and at this point one might be inclined to believe that it has no solution.

1.2 A “Signature Paradox”

Those who subscribe to the pessimism expressed in the final statement of the previous
subsection will not have a hard time accepting the following “theorem”, which would be
a far-reaching generalization of the second statement of the theorem on unforgeability of
trapdoor signatures, were it only true.

Theorem 2 (The fallacious “Signature Paradox”) If SIG = (Gen, Sign, Ver) is uni-
versally unforgeable against V K-only attack, then it is existentially forgeable against chosen
message attacks.

Corollary 1 (“No secure signatures”) There do not exist signature schemes that are
existentially unforgeable against CMA.

Proof: The corollary follows form the “theorem” because existential unforgeability against
CMA implies universal unforgeability against V K-only attack. Therefore, a scheme cannot
satisfy the former property without also satisfying the latter, and the theorem says that
universal unforgeability against V K-only attack implies existential forgery against CMA.

As for the “theorem”, its “proof” goes as follows. The way one proves that some
SIG = (Gen, Sign, Ver) is universally unforgeable under V K-only attack is to prove that
that property is equivalent to some “hardness” assumption on a problem X that we believe
to be true. On one hand, one shows that the “hard” problem X is such that its solution
yields an algorithm to break SIG in polynomial time (for instance, if one can factor n then
one can take modular square roots modn and break the Rabin signature scheme with that
modulus). On the other hand, one assumes the existence of a PPT A that on input (V K, m)
provides a valid signature σ for any m and shows (to get a contradiction) that that would
imply that there exists a PPT (denoted by B) that would use A as a “black box” (i.e. as
an oracle) to break the hardness assumption and solve that given instance of X (in the
Rabin case, if such an A exists, than one can take square roots, and using that square
root algorithm as a black box one can factor the modulus). Thus, the existence of such
“universal” B proves that the presumed A does not exist. Notice, however, that B by itself
is well-defined: given a good A, B would break X.
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But then, if the adversary can perform CMA, he can use this B = B(V K), only that,
in place of using “black box calls” to A to get σ′ = A(V K, m) (for a given m), he uses
a CMA instead to get σ = SignSK(m). Then B can solve X in polynomial time and use
that solution to break the signature scheme SIG. Therefore, CMA allows the adversary to
substitute attacks to the sender for calls to A. For instance, in Rabin’s case, that would
mean that with a CMA with some well-chosen messages, one would have enough information
to factor the modulus n and then break the signature scheme.

What is wrong with that “proof”? Well, here is one mistake in it. When B uses A
as an oracle in the proof by contradiction of the universal unforgeability of SIG, B can
make any query he wants to A. Among other things, he might make a query of the form
A(V K ′, m), where V K ′ 6= V K. That is, he might try different verification keys, maybe
because if one knows SignV K′(m) for several different V K ′ one can make a very good guess
of what the solution to X is (who knows?). On the other hand, when we try to turn B
into a CMA adversary, we must then commit to a single verification key: the one that is
randomly chosen by the sender. That is, whenever B launches a CMA on the sender, he
(the sender) always uses the V K that he himself has chosen; equivalently (in a more formal
language), all oracle calls that B can make to SignSK must use the same SK that is in the
output of Gen, and it is quite improbable that a V K ′ 6= V K will work with SK in the right
way. Therefore, the last paragraph of that “proof” is wrong.

2 One-time secure signature schemes

The falsehood of the “signature paradox” in the last section leaves us with some hope that
it might be possible to build secure signature schemes after all. But given all the difficulties
we have faced so far, we’d better try to do it one step at a time. Our plan, which we begin
to put into practice in this section, is: to build a rather simple scheme that is secure as long
as the adversary can only make one CMA, and to show how to get a secure scheme out of
it.

2.1 Lamport’s scheme for one bit

One-way functions (OWF) provide a nice way of signing one bit, which we present below.

Definition 1 [Lamport’s scheme for 1-bit messages] Using the notation from the definition
of PKS, and letting f : {0, 1}∗ → {0, 1}∗ be a fixed OWF, we define Lamport’s scheme for
one-bit messages by:

a) SK = (X0, X1), where X0 and X1 are drawn randomly and independently from
{0, 1}k, and V K = (Y0, Y1) = (f(X0), f(X1)).

b) SignSK(m) = Xm (remember, m ∈ {0, 1})

c) VerV K(σ, m) = [f(σ) = Ym]

♦
Lamport’s scheme is “one-time secure” in the sense that if the adversary wants to find

out what the signature for 1 (say) with only one oracle query, that query must have the
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form SignSK(0) = X0, which is just a random string and doesn’t help him at all in finding
out what SignSK(1) is. The intuition can be easily transformed into a proof.

Remark 1 In fact, Lamport’s scheme is “many-time” secure as well for the trivial reason
that there are only two messages. So the only non-trivial attack by the adversary is to forge
a signature of b ∈ {0, 1} given a signature of (1 − b), i.e. general security is the same as
one-time security.

We next generalize this to many bits.

2.2 Lamport’s Scheme for many bits

The generalization for long (say, length n = p(k)) messages of Lamport’s scheme is:

Definition 2 [Lamport’s scheme for n-bit messages] Using the notation from the definition
of PKS, and letting f : {0, 1}∗ → {0, 1}∗ be a fixed OWF, we define Lamport’s scheme for
{0, 1}n by:

a) Let SK = (X1
0 , X1

1 , X2
0 , X2

1 , . . . , Xn
0 , Xn

1 ), where the Xj
i ’s are drawn randomly and in-

dependently from {0, 1}k, and V K = (Y 1
0 , Y 1

1 , Y 2
0 , Y 2

1 , . . . , Y n
0 , Y n

1 ) with Y j
i = f(Xj

i ).

b) σ = SignSK(m1 . . . mn) = Xm1
, . . . , Xmn .

c) VerV K(σ1 . . . σn, m1 . . .mn) = [∀i ∈ {1, . . . , n}, f(σi) = Ymi
].

♦
What Lamport’s scheme does is it builds two tables, one for signing (in which entry

(i, j) corresponds to the block that is used at the jth position of σ if mj = i, that is Xj
i )

and one for verification (in which entry (i, j) corresponds to the block that is used at the
jth position of σ if mj = i, that is Y j

i = f(Xj
i )). See the illustration below for n = 5.

bit/position 1 2 3 4 5

0 X1
0 X2

0 X3
0 X4

0 X5
0

1 X1
1 X2

1 X3
1 X4

1 X5
1

Table for Signing

bit/position 1 2 3 4 5

0 Y 1
0 Y 2

0 Y 3
0 Y 4

0 Y 5
0

1 Y 1
1 Y 2

1 Y 3
1 Y 4

1 Y 5
1

Table for Verification

bit/position 1 2 3 4 5

0 X1

0
X2

0 X3

0
X4

0
X5

0

1 X1
1 X2

1
X3

1 X4
1 X5

1

The signature of 01001 is shown in bold.
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We notice that an adversary can break the scheme with 2 queries, for if it gets Sign(0n) =
X1

0 . . . Xn
0 and Sign(1n) = X1

1 . . . Xn
1 , then it knows all Xj

i and can forge a signature for any
given message. However, the scheme is one-time secure in the following sense.

Definition 3 [One-time security for PKS] A PKS SIG = (Gen, Sign, Ver) is said to be one-
time secure, that is, existentially unforgeable against CMA with one chosen message query
only if for all PPT A we have

Pr(V er(m, σ) = accept | (SK, V K)← Gen(1k), (m, σ)← ASignSK (V K)) ≤ negl(k)

where A A can use the oracle for on at most one query q and cannot output forgery m = q.
♦

Theorem 3 (One-time security of Lamport’s scheme)
Lamport’s scheme is one-time secure provided f is a OWF.

Proof: By contradiction. Suppose that there exists a PPT adversary A that violates the
definition of one-time security for Lamport’s scheme with non-negligible probability ε. We
can assume without loss of generality that A makes exactly one oracle call, and that the
query and the forgery string both the (expected) length n.

We consider the following “experiment” B. Given input y that B tries to invert, B
runs Gen(1k) to get SK and V K. It then modifies one of the blocks of the verification key:
instead of Y j

i we now have Y ′j
i = y for some random pair (i, j), and all the other blocks stay

the same. Let’s call this new verification key V K ′; note that V K and V K ′ have the same
distribution. Also, B knows the secret key SK ′ corresponding to V K ′ except for the value
x ∈ f−1(y) that B tries to extract from A. The key observation (that is easy to check)
is the following: If y = f(x) where x ∈ {0, 1}k is random, V K and V K ′ have the same
distribution; moreover, i and j are independent of V K ′. The new verification table looks
like this (for i = 1, j = 3 and n = 5):

bit/position 1 2 3 4 5

0 Y 1
0 Y 2

0 Y 3
0 Y 4

0 Y 5
0

1 Y 1
1 Y 2

1 y Y 4
1 Y 5

1

Denote by q = q1 . . . qn the string whose signature A(V K ′) asks the signing oracle (sim-
ulated by B). If it happens that qj = i, then we fail in our attempt to recover x. However,
since i is random and V K ′ is independent of i, we have that qj 6= i with probability 1/2. In
this latter case, B can easily “sign” q for A since it does not need x ∈ f−1(y) for the signa-
ture. Thus, with probability at least ε/2 we get that A outputs a valid message/signature
pair (m, σ), where m 6= q, i.e. m1 . . .mn 6= q1 . . . qn. Hence, there must be at least one index
ℓ such that mℓ 6= qℓ. Since j is chosen at random at the view of A so far was independent
from j, we get that ℓ = j with probability 1/n. Thus, with overall non-negligible probability
ε/2n we have mj = i, and thus σj ∈ f−1(y). Therefore, with non-negligible probability B
can output this σj and invert the OWF f .
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2.3 Long Messages

Although the Lamport scheme allows us to sign arbitrarily long messages (say, of length
n), this comes at the expense of having a public key of length roughly 2nk, which is much
larger than the length of the message. As we will see, not only is this inefficient, but it is
also insufficient for many practical applications of one-time signatures: for example, those
that need to sign verification keys (and there are many of those, stay tuned)! So how do
we construct one-time signatures where the length of the verification key is (much) shorter
than the length of the message? The answer is to use the hash-thn-sign paradigm! Namely,
rather than one-time signing a long m (which might not “fit”), we first hash it down to
a short string h(m), and one-time sign h(m). What properties are needed from h? As
we saw from last class, collision-resistance is enough. In fact, as was mentioned in the
optional material, even universal one-wayness is enough, but we will assume CRHFs for
simplicity. Also, although the hash-then-sign was stated for “many-time” signatures, it is
easy to see from the proof that it works for one-time signatures as well. Notice, our CRHFs
construction had a fixed-length public key pk, and were capable of hashing essentially
unbounded-length messages. Thus, using the hash-then-sign with such CRHFs, we get a
one-time signature capable of one-time signing essentially unbounded messages, and having
a fixed-length verification key vk′ = (vk, pk), where vk is the verification key capable of
handling messages whose length is the output of our hash function. Assuming the latter
is proportional to the security parameter k, and that the public key pk for our CRHF is
smaller than O(k2), — which is the case for all our constructions, — we get the following
corollary by using Lampert’s one-time signature:

Lemma 2 Given a CRHF whose output size is O(k) and public key at most O(k2), there ex-
ists a one-time signature scheme capable of signing arbitrary (polynomial-)length messages,
and having a verification key of size O(k2).

Remark 2 Similar lemma holds for UOWHFs as well. The only caveat is that the public
key of our UOWHFs (which are not already CRHFs) was proportional to log L, where L is
the length of the hashed message. Specifically, we knew how to make it roughly O(k2 log L),
although better constructions are possible. Thus, using UOWHFs, to sign messages of length
L, we get a final verification key of size O(k2 log L). For L > k2 log k, this is smaller than
the length of the message.

3 From One-time to Full-fledged Security

Let OT-SIG = (Gen, Sign, Ver) denote any one-time secure signature scheme capable if sign-
ing “long-enough” messages. Our question now is: is there a general way of building a
secure PKS from OT-SIG? It is not enough to divide the message into blocks and sign each
block separately: Lamport’s scheme did that and yet didn’t meet the security standards
that we set for ourselves.

In what follows, we describe several natural approaches, eventually leading to a positive
answer to this question.
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3.1 First Attempt: Use Independent Keys

The first natural idea is to choose t independent key pairs {(SKi, V Ki)}ti=1 for our one-time
signature scheme, and use the i-th pair of keys to sign ti i-th message mi. In particular,
after the i-the message is signed, the signer will remember to never reuse the i-th secret key
again. This “works”, but has the following disadvantages:

• Signer must keep state. Indeed, the signer must remember which keys were used,
to ensure he will never reuse the old key. Thus, we have what is called a stateful
signature scheme.

• A-Priori Bounded Number of Messages. Clearly, one ccan only sign t messages,
where t is the parameter which needs to be decided upon at the beginning. Ideally,
we would like to sign an arbitrary (polynimail) number of messages.

• Long Verfication Key. The length of the verification key (V K1 . . . V Kt) is propor-
tional to the maximum number of signed messages t. Thus, if t is large, so is the
verification key.

• Long Signing Key. Same as above, but for the signing key.

3.2 Second Attempt: Merkle Trees

We start with the simplest pronlem: long verification key V K = (V K1, ldots, V Kt). In-
stead, ley h is a collision-resistant hash function, and let vk = h(V K) (plus the description
of h). This works, but, now, the signer must include V K as part of the signature, since
otherwise, the verifier will not know which verification key V Ki to use. This makes the
signature size proportional to t, which is pretty bad.

A natural attempt would be to only provide V Ki to the verifier as part of the signature.
This reduces the length of the signature, but creates another problem: how does the verifier,
who only knows vk = h(V K1, . . . , V Kt), check that V Ki is the correct key, and not some
bogus key provided by the attacker? At first, it seems like there is nothing we can do,
beside providing the entire V K. But then we can remember the idea of the Merkle tree,
which solves precisely the problem that we have!

Indeed, by using a “bottom-up” complete binary tree to iteravely hash V K1, . . . , V Kt

(using the same h), we know that we can prove any particular V Ki by opening only log t
values on the path from V Ki to the root: namely, V Ki itself and all the siblings of the
nodes on the path up from V Ki to the root vk. This is called Merkle Signature. As before,
the scheme is stateful, allows to sign an a-priori bounded number of messages t, has the
secret key proportional to t, but now has a constant (i.e., O(k)) verification key, and the
total signature of size O(k log t).

3.3 Third Attempt: Top-Down Approach

We try a different idea here, which will allow us to get rid of the main problem we faced so
far — an a-priori bound on the number t of signed messages. Instead of going bottom-up,
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like with Merkle signatures, we will ensure a constant size verification key by going “top-
down”. We start with using a simple path, latter extending it to a complete binarty tree,
and even later taking care of other inefficiencies. The basic idea is due to Naor-Yung.

What we do is the following. Suppose one wants to sign the messages m0, m1 . . . (of
appropriate length) in that given order, where there is no bound of t. The scheme SIG that
we propose proceeds as follows.

a) First, it gets (SK0, V K0)← Gen(1k). V K0 is the (public) verification key of our new
scheme SIG.

b) To sign m0, SIG gets (SK1, V K1)← Gen(1k), then computes σ1 = SignSK0
(m0, V K1)

(namely, it signs a tuple [m0, V K1], where , is some special character that doesn’t show
up in other places so that we can separate m0 from V K1) and outputs (σ1, V K1, m0)
as the signature of m0 (for notational convenience, we include the message inside the
signature). It also remembers (σ1, V K1, m0) for future use.

c) To check whether (σ1, V K1) is a valid signature for m0 under SIG, the receiver checks
if VerV K0

([m0, V K1], σ1) = accept (i.e. whether σ1 is a valid signature for [m0, V K1]
in the OT-SIG scheme.

d) Inductively, to sign mi (for i ≥ 2), SIG gets (SKi+1, V Ki+1) ← Gen(1k), computes
σi+1 = SignSKi

(mi, V Ki+1) and outputs (σi+1, V Ki+1, mi . . . , σ1, V K1, m0) (i.e. the
entire history so far!) as the signature of mi.

e) Finally, to check whether (σi+1, V Ki+1, mi . . . , σ1, V K1, m0) is a good signature of mi,
one successively checks all the signatures by VerV Kj

([σj+1, V Kj+1], mj), and accepts
only if the entire chain is valid (0 ≤ j ≤ i), where the last key V K0 is taken from the
public file.

On an intuitive level, this scheme is secure because no key is used more than once, and
therefore the “one-timeness” of OT-SIG is enough. Indeed, if an adversary B attacks the
sender with successive chosen messages, each answer it will get will correspond to a different
secret key and that will circumvent the original limitations of OT-SIG. As we sketch below,
this is indeed correct. However, notice a crucial requirement for our OT-SIG: it has to sign
messages which are longer than its verification key! Indeed, already at the first level one
needs to sign the key V K1 plus the first message using SK0. Luckily, due to Lemma 2 (and
remark Remark 2 for UOWHFs), this is no problem!

Theorem 4 Provided OT-SIG can sign messages longer that the length of its verification
key, the above (stateful and inefficient) construction is existentially unforgeable against cho-
sen message attack (for messages of corresponding length as explained above).

Proof: The proof is simple, but a bit tedious, so we just sketch the idea (the sketch below
can be easily transofrmed into a formal proof).

Say some A asks to sign messages m0 . . .mt, gets a chain (σt+1, V Kt+1, mt . . . , σ1, V K1, m0)
from the oracle, and forges the signature (σ′

i+1, V K ′

i+1, m
′

i . . . , σ
′

1, V K ′

1, m
′

0) of some m′

i 6∈
{m1 . . .mt}. We claim that there exists and index j ≤ max(i, t) such that “along the
way”, A produced a forgery σ′

j of a “new message” [m′

j , V Kj+1] under the key SKj , which
contradicts one-time security of the j-th one-time signture. The proof is a bit boring:
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1. If [m′

0, V K ′

1] 6= [m0, V K1], then [m′

0, V K ′

1] is a new message w.r.t. V K0, and σ1 is
the forgery.

2. Otherwise (equality so far), if [m′

1, V K ′

2] 6= [m1, V K2], then [m′

1, V K ′

2] is a new mes-
sage w.r.t. V K1 = V K ′

1, and σ2 is the forgery.

3. Otherwise (equality so far), if [m′

2, V K ′

3] 6= [m2, V K3], then [m′

2, V K ′

3] is a new mes-
sage w.r.t. V K2 = V K ′

2, and σ3 is the forgery.

4. And so on. The point is that since we have m′

i 6∈ {m1 . . . mt}, at some point j we
must have inequality: at the worst case, if i > t, [m′

t+1, V Kt+2] is a new message w.r.t.
V Kt+1, since no signatures w.r.t. V Kt+1 were given to A by its oracle.

Of course, how do we find this j, and how do we simulate the run of A with this j. Well,
we pick j at random from {0 . . . T} (where T is the upper bound of A’s running time). We
generate all the keys on our own, except for the j-th key, where we use the given verification
key V K whose one-time seurity we want to compromise. The formal proof follows quite
easily from the above.

Remark 3 Notice, however, that this construction (known as the Naor-Yung construc-
tion) shows that our explanation of the flaws of the “proof of the signature paradox” is not
at all artificial. The scheme SIG above uses Sign (from OT-SIG) as a black box, but each
time it does so the secret key is different.

3.4 Improvements: removing state and fixing signature size

The signature scheme above has at least two undesirable features. First, it is stateful.
Second, the size of the signature is proportional to the number of messages. It turns out,
we can remove these negative features.

We start with the second problem. Notice, our verification procedure can be thought
as a long path: first signature authenticates the second, the second — the third, and so on
until the last i-th signature authenticates the actual i-th message signed. Thus, we have a
grawing path V K0 → V K1 → . . .. It seems much more economical to use a complete binary
tree. Namely, the original V K = V Kε authneticates two new key: V K0 and V K1. V K0

in turn authenticates V K00 and V K01, while V K1 — V K10 and V K11. And so on until
some level k (say, our security parameter; we only need the level to withstand the birthday
attack, as we shall see). More specifically, imagine the following exponential collection
of signatures (kept implicitly): SignSKε

(V K0, V K1), . . . ,SignSKx
(V Kx0, V Kx1, . . . until we

authnticate all 2k nodes V Kx, where |x| = k. Now, to sign every message m we will use a
different root-leaf path x down the tree. Assume we decided on x = x1 . . . xk based on m
(see how later), the fixed size signature of m is
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SignSKε
(V Kx1

, V K1−x1
) , V Kx1

, V K1−x1
,

SignSKx1

(V Kx1x2
, V Kx1(1−x2)) , V Kx1x2

, V Kx1(1−x2)

. . . , . . .

SignSKx1...xk−1

(V Kx1...xk−1xk
, V Kx1...xk−1(1−xk)) , V Kx1...xk−1xk

, V Kx1...xk−1(1−xk),

SignSKx
(m)

We need to address a couple of questions to make this work. We sketch the answers.

• Can we fit two keys inside our one-time signature? the answer is yes if we use a
slightly more shrinking CRHF (or UOWHF). So this is not a problem.

• How do we remember these exponentially many keys? The answer is to use a PRF!
Namely, we pick a random seed s for a PRF, and use fs(x) to get the randomness
needed to produce the key pair (SKx, V Kx) for node x. Since s is kept secret, these
indeed look like properly generated independent signing/verification keys for our one-
time signature scheme.

• How do we choose the path x based on m, so that they are all distinct?1 There are
several ways to achieve this. The simplest is to choose x at random. Since k is large
enough to withstand birthday attack, the probability of reusing the path is negligible.
Alternatively, we can use our PRF to extract k pseudorandom bits out of m, and
let them define x (this makes the signature deterministic!). Yet alternatively, if the
message space is {0, 1}k, we can actually use x = m to achieve uniqueness. Finally,
for larger message spaces we can use CRHF’s or UOWHF’s (the latter should be fresh
for every use) to hash our message space into {0, 1}k.

The above semi-formal sketch gives a construction, which: (1) can be based on OWFs
and CRHFs (or even UOWHFs2); (2) is stateless; (3) can be even made deterministic; (4) has
fixed signature size; (5) can sign arbitrarily large messages (if needed, using hash-then-sign
method); (6) is existentially unforgeable under the chosen message attack. In particular, if
we use the UOWHFs instead of more powerful CRHFs, since it is known that UOWHFs can
be built from OWFs, in principle we get the following (very inefficient) result:

Corollary 3 Secure signature schemes exist iff OWF’s exist.

3.5 Efficient Signatures?

Unfortunately, the above construction is extremely inefficient, and can never be used in
practice. Thus, the next question is what do we do in practice? Half of the answer we already

1Remember, we need distinctness to prove that the scheme is unforgeable; indeed, if we use the same x

for m1 and m2, the adversary might recover SKx after seeing signatures of m1 and m2 with SKx, and then
reuse the authentication path x to forge a signature of any other message. We also know that distinctness
of all the paths suffices to show security.

2For the case of UOWHFs, notice that the messages we need to has can be thought as chosen before the
new hash key is chosen, so using UOWHFs is OK.
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know: using the hash-then-sign paradigm, it suffices to design efficient fixed-message-size
signature schemes. But how to design the latter ones efficiently? We give two answers to
that:

• Using Specific Number-Theory Assumptions. For example, the Cramer-Shoup
signature scheme is provably secure under s stronger version of the RSA assumption:
given composite n and random y ∈ Z

∗

n it is hard to extract any non-trivial root of y.
Namely, it is hard to come up with x ∈ Z

∗

n and e > 1 so that xe = y mod n. The usual
RSA assumption fixes e as a (random) input to the problem. We do not have time to
present this signature scheme, since its proof is somewhat complicated. Interestingly,
this is pretty much the only provable and efficient number-theoretic signature scheme
up to date.

• Using Random Oracle Model. This is the topic of the next section. It turns out
that in this model there is a huge variety of very simple-to-state signature schemes
(and other cryptographic primitives, like encryption, etc.!) which are: (1) extremely
efficient; (2) provably secure. What’s the catch? This model assumes something which
does not exist... Curious? Read the next section.

4 Random Oracle Model and Full Domain Hash

Remember the hash-then-sign methodology. Informally, it said that if SIG is a “secure”
signature scheme, and h is a “well-behaved” hash function, then SIG′ inherits the security of
SIG, where Sign′(m) = Sign(h(m)). Thus, a “good” hash function may succeed in preserving
the security of our original signature scheme. Let’s ask a more ambitious question. Can
a “really good” hash function improve the security of the signature scheme we started
from? To be more specific, consider the first signature scheme that comes to mind and
that we originally rejected — trapdoor signature. Here f is a TDP and Sign(m) = f−1(m)

while Ver(σ) = [f(σ)
?
= m]. We saw that this scheme is existentially forgeable under

key-only attack. However, let us try to apply the hash-then-sign method hoping that
good enough h can make the scheme secure. We get Sign(m) = f−1(h(m)) and Ver(σ) =

[f(σ)
?
= h(m)]. Rephrasing our question above, what properties of h (if any) would make

the trapdoor signature above existentially unforgeable against the chosen message attack?
From a practical point of view, it seems like having some really good function h indeed
improves the security of the trapdoor signature: for example, existential forgery no longer
seems possible. But can we prove it?

Before answering this question, let’s try some of the candidates for h which we already
know about. First, assume h is chosen at random from the family of CRHF’s, and made
part of the public key. Unfortunately, this does not seem to be sufficient. Intuitively, to
prove the security of a construction based on a trapdoor permutation, the permutation
(and thus its inverse) has to be always applied to a (pseudo)random input. In our case,
we compute f−1(h(m)), which is (pseudo)random only if h(m) is (pseudo)random. The
definition of CRHF’s says nothing about pseudorandomness of h(m). In fact, one can design
very non-random CRHF families. Thus, CRHF’s do not seem to suffice. The next attempt
will be to choose h from a family of PRF’s. This seems to solve the pseudorandomness of
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h(m) issue... but not quite. The problem is, should the seed h to our family be public
or private? If it is private, the family is indeed pseudorandom, but then we cannot verify
the signatures, since we cannot compute the values h(m). On the other hand, if it is made
public, the values h(m) no longer seem pseudorandom! More precisely, keeping h public
will never allow us to contradict the security of PRF’s (which rely on the seed being secret).
Thus, PRF’s do not quite work as well.

In fact, no conventional function h (even taken from some function family) can work!3

Indeed, h has to be public for verification, and pseudorandom for security. Do there exist
public pseudorandom functions? The answer is no. Once something is public (and efficient),
it is never pseudorandom: indeed, predicting h(m) is trivial. So it seems like we did not
achieve anything. But what if we assumed that public truly random functions exist? And
then, assuming h is such a function, can we prove that the modified trapdoor signature is
secure?

4.1 Random Oracle Model

We will demonstrate in a second that the answer to the above question is indeed positive.
But first, let us examine our new model more closely. In this model, called the Random
Oracle Model, one assumes the existence of a public truly random function h. This h is
called a random oracle.

The model seems contradictory at first. A skeptic might say: “No wonder we can great
things in this model. Since a public function is no longer random, we are assuming something
which does not exist. From a false statement, anything can be proven.” And indeed, many
people appall the RO model. However, it is not as meaningless as one might imagine. First,
we are not necessarily proving the existence of some objects. Usually, we are basing some
specific construction on a “ideal function” h, and try to argue if this construction is secure.
Second, one can “implement” our function in the following way. Imagine a true “random
oracle” O sitting in the sky. Whenever we need some value h(m), we give O a query m,
and O returns h(m). The oracle O is assumed to be completely trusted: (1) all the values
returned are random and independent from each other; (2) the same query m will return
the same answer h(m), and (3) O does not cooperate with an adversary, so every “new”
value h(m) indeed looks random to everyone (including the adversary). In this sense, the
model is actually “implementable”. Of course, in real life, the role of O be be played by
some publically known function h. But what the proof of security in the RO model really
says is the following: “If you believe that the only way the adversary uses the knowledge of
h is by computing h at points of its choice, and if the function h indeed looks pseudorandom
to such a restricted adversary, then the adversary indeed cannot break the security of the
system.” To put it differently, it rules out at least a certain class of “black-box” attacks.
Namely, if the adversary wants to break the system, it really has to look at the details of
h’s implementation and try to exploit them. If it treats h like a “black-box”, it cannot be
successful.

To summarize the above discussion, RO model is a very strong assumption, in fact,
non-existent. However, the proof in the RO model are not meaningless: they at least show

3In fact, there are papers shoing it is very unlikely to base the security of the signature above in the
“standard model”.
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that there is something secure about the system designed, and to find a possible flaw,
the adversary must utilize the weaknesses of the public function h. In practice, functions
like SHA do not seem to have to weaknesses which are easy to exploit, at least up to
date.4 Thus, in practice, scheme secure in the RO model, are “currently secure” in the real
life as well. Having said that, one should be very careful when using the random oracle.
In particular, to justify a scheme in the RO model, this scheme should satisfy be either
significantly simpler/efficient than current schemes without random oracle, or there should
be no provable schemes without random oracle that achieve the task at hand. In practice,
both cases happen: many things (including signatures and encryption) are very easy to do
in the RO model, and for certain advanced cryptographic concepts (i.e., “identity based
cryptography” among other), only RO-based solutions are currently known. Below we give
the simplest example of using the RO model.

4.2 Full Domain Hash

We now come back to the modified trapdoor signature scheme — called the full domain
hash — and show its security in the RO model. The proof will show the power of the model.

Recall, f is a TDP, Sign(m) = f−1(h(m)) and Ver(σ) = [f(σ)
?
= h(m)]. Intuitively,

seeing a signature of some message m corresponds to seeing a random (x, f(x)) pair (where
x = f−1(h(m)) is indeed random). Such pair the adversary can generate by itself. On the
other hand, forging a signature of a “new” m corresponds to inverting f at a random point
h(m), which should be hard since f is one-way. We translate this intuition into a formal
proof.

Theorem 5 Full domain hash is existentially unforgeable against the chosen message at-
tack, provided f is a TDP and h is modeled as a RO.

Proof: Assume some A produces existentially forgery of the full domain hash with prob-
ability ε. Say, A asks signatures of m1 . . .mt, and forges a signature of m 6∈ {m1 . . .mt}.
In order for A to work, A requires oracle access to RO h (we denote this by writing Ah).
Without loss of generality, we assume that before asking a signature of mi, Ah asked the
oracle the value h(mi). Also, before producing the forgery for m, Ah checked h(m). Clearly,
Ah might as well do these things without much loss in efficiency.

Using Ah, we construct an adversary B which breaks the one-wayness property of f
with non-negligible probability ε/q, where q is the maximum number of questions A asks
the random oracle.5 Naturally, B should somehow simulate the run of Ah. But here is a
“complication”, whose “resolution” really shows the power of the RO model: B does not
have any random oracles! Indeed, B is supposed to invert a TDP f in the standard model
we were using so far. On the other hand, Ah expects access to RO h. Where can B provide
Ah with h? The answer is, B simulates the RO bu itself. Namely, whenever Ah wants to
get h(z) for some z, Ah now “really aks B for it”, and B returns h(z) in place of the oracle.
One way for B to do it is to indeed return a random string for every new query of Ah

4Recently, some attacks on SHA were found, but they are more or less very clever brute-force attacks,
which are easily solved by making the output slightly longer and/or increasing the number of rounds.

5In turns out that a more careful analysis can improve this pessimistic, but sufficient bound. For clarity,
we will not present such better analysis here.
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(and return consistent strings for old queries; since the number of queries is polynomial, B
can remember all the queries so far). As we will see in a second, however, B can be more
creative, provided all the answers are indeed random (indeed, A we do not know if A works
well with “non-random” oracles). In other words, B can pick a random string in a possibly
more complicated way, than by “simply picking a random string”. We will see this in a
second.

Let’s now describe our B. On input y = f(x) for unknown x, B sets the public key of
SIG to the desription of f , picks a random j ∈ {1 . . . q} (recall, q is the number of question
Ah asks to RO) and starts running Ah with this verification key. Whenever Ah asks his i-th
query h(zi), B does the following. If zi was already asked, B answers with the same value
as before (i.e., answers consistently). If the query z is “new” and i 6= j, B picks a random
xi, computes yi = f(xi), and claims that h(zi) = yi. Notice, yi is indeed random, since f is
a permutation, and xi is random. B then remembers (xi, yi, zi), so that in addition to yi,
B also knows the “signature” xi of zi (indeed, f(xi) = yi = h(zi)!). Finally, if the query
is new and i = j, B returns its own input y and the value h(zj). Notice, in the case the
“signature” of zj is the value x = f−1(y) that B is trying to find. Jumping ahead, B hopes
Ah will forge a signature x of m = zj .

Next, we have to tell how Ah answers the signing queries of Ah. Assume Ah wants
to sign the message ms. By our assumption, we assumed that Ah would first ask h(ms),
so ms = zi for some i. But unless i = j (in which case B halts with failure), B already
knows the signature xi of zi = ms! Thus, unless i = j B can successfully answers the
the signing queries. Finally, it’s Ah’s turn to output the forgery (m, σ). We assumed that
Ah asked the value h(m) earlier, so m = zi for some i. Notice, if σ is valid and i = j,
σ = f−1(h(zj)) = f−1(y)) = x. Thus, B succeeds in inverting y = f(x) provided Ah forged
the signature of zj . Since j was chosen at random, and all the random oracle answers were
independent of j (since y and all the yi’s were random), the probability that Ah finds a
signature of zj is at least ε/q, which is non-negligible. This completes the proof.

We remark on the crucial point of the proof: B has control over how to simulate the
random oracle, so that it can later answer the signing quesries of A. This is exactly the
power of the RO model. We assume that the adversary can only access h in a “black-box”
way, so it is legal for B to know A’s questions, and to prepare “convenient” answers.

Remark 4 We also notice that our reduction lost a pretty significant factor q in the se-
curity, where q is the number of hash queries made by the attacker. While the loss of this
factor q is unavoidable with general TDPs, it turns out that a more clever reductions for
specific TDPs, including RSA and Rabin. In fact, and TDP f “induced” from a family of
CFPs (f, g) turns out to be sufficient. For such TDPs, the security loss goes from ε/q to
roughly ε/qs, where qs is the number of signing queries issued by the attacker (as opposed
to q, which is the number of hash queries, and which could be much higher in practice).

We conclude the lecture by pointing out that there are many other simple (and practi-
cally importnat) signature scheme designed and analyzed in the RO model.

Lecture 13, page-15



CSCI-GA.3210-001

MATH-GA.2170-001
Introduction to Cryptography April 25, 2012

Lecture 14

Lecturer: Yevgeniy Dodis Spring 2012

This lecture is on Commitment Schemes. Informally, a commitment scheme abstracts
the notion of a “locked box”: the contents of the box are hidden (without the key), but
can be opened in only one way. First, a formal definition of a non-interactive Commitment
Scheme is given along with some explanation. Then some examples of Commitment Schemes
are given: based on “committing” encryption, PRG’s (thus, OWF’s), OWP’s, CRHF’s, dis-
crete log (Pedersen’s commitment), random oracle. Compositions of Commitment schemes
are considered including bit-by-bit (ala encryption) and “hash-then-commit” (ala signa-
tures) methods. We also briefly talk about a slightly relaxed notion of commitment, which
allows us to use UOWHF’s in place of CRHF’s, and suffices for some of the applications of
commitment. Finally, several applications of Commitment Schemes are given along with a
brief explanation of zero knowledge proofs.

1 Commitment Schemes

1.1 Introduction

Commitment schemes arise out of the need for parties to commit to a choice or value and
later communicate that value to the other parties involved in such a way that is fair to all
the parties. The main problem here is that we do not want one party to find out about
any other party’s commitment before the latter opens this value itself. On the other hand,
we do not want a party to be able to open its commitment in multiple ways (then, there is
no point in “committing” in the first place). Therefore, we want our Commitment Scheme
to somewhat resemble a locked box that contains some value. This locked box is given to
the parties but it does not reveal anything about the commitment contained in it until the
key for the locked box is released so the parties can open it. The “digital” implementation
of this locked box however introduces the possibility for the locked box to contain multiple
values (i.e., have several valid “keys” that open it in different ways). Therefore we have to
ensure that each locked box can only hold one value.

We only consider so called “non-interactive” schemes, where all the communication goes
from the sender to the receiver.1 We will omit the word non-interactive from most of the
discussion though. A bit more formally, a Commitment Scheme transforms a value m into
a pair (c, d) here c is the locked box and d is the key such that (1) c reveals no information
about m, but (2) together (c, d) reveal m, and it is infeasible to find d′ such that (c, d′)
reveals m′ 6= m. This is defined formally next.

1This can be contrasted with a more general protocols when the sender and the recipient can send messages
to each other in multiple rounds.
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1.2 Definition

Definition 1 [Commitment Scheme] A (non-interactive) Commitment Scheme (for a mes-
sage space M) is a triple (Setup, Commit, Open) such that:

(a) CK← Setup(1k) generates the public commitment key.

(b) for any m ∈ M , (c, d) ← CommitCK(m) is the commitment/opening pair for m.
c = c(m) serves as the commitment value, and d = d(m) as the opening value. We
often omit mentioning the public key CK when it is clear from the context.

(c) OpenCK(c, d)→ m̃ ∈M ∪ {⊥}, where ⊥ is returned if c is not a valid commitment to
any message. We often omit mentioning the public key CK when it is clear from the
context.

(d) Correctness: for any m ∈M , OpenCK(CommitCK(m)) = m

♦

Here is how a commitment scheme is used. If Bob wants to commit a value m to Alice
(using the commitment key CK which we don’t explicitly mention below), he first generates
the pair (c, d) ← Commit(m), and sends c to Alice. Naturally, this is called the commit
stage. Later, when he wants to open m, he sends d to Alice, who runs m̃← Open(c, d), and
accepts the value m̃ provided that m̃ 6= ⊥. This is called the reveal (or opening) stage. By
correctness, m̃ = m if everybody is honest.

Security. As we stated informally, we want two security properties: (1) c gives Alice no
information about m, and (d) Bob cannot open c in two different ways. The properties
stated above are called hiding and binding.

1. Hiding. It is computationally hard for any adversary A to generate two messages
m0, m1 ∈ M such that A can distinguish between their corresponding locked boxes
c0, c1. That is, c(m) reveals no information about m. Formally, for any PPT A =
(A1, A2) we require:

Pr
[

b = b̃
∣

∣

∣

CK← Setup(1k), (m0, m1, α)← A1(CK), b←r {0, 1},

(c, d)← CommitCK(mb), b̃← A2(c; α)

]

≤
1

2
+ negl(k)

We write c(m0) ≈ c(m1), for any (m0, m1) chosen by A.

2. Binding. It is computationally hard for the adversary A to come up with a triple
(c, d, d′), referred to as a collision, such that (c, d) and (c, d′) are valid commitments
for m and m′ and m 6= m′. Formally, for any PPT A we require:

Pr
[ m 6= m′ ∧

m, m′ 6= ⊥

∣

∣

∣

CK← Setup(1k), (c, d, d′)← A(CK)
m← OpenCK(c, d), m′ ← OpenCK(c, d′)

]

≤ negl(k)
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1.3 Comments

Commitment and Encryption. The hiding property of commitments is exactly the
same as for (CPA-secure) public-key encryption: namely, c(m0) ≈ c(m1), for any m0 and
m1. The binding property also seems similar. For commitments it says that every c can
be opened in at most one way. Translated to encryption, it says that any encryption can
be decrypted in at most one way. The types of encryptions we studied in this class indeed
satisfy this property. Indeed, in our definitions Alice — the owner of the secret key — can
always correctly decrypt any message sent to her using her public key PK): for any m,
SK and PK, DSK(EPK(m)) = m. Thus, if there was a ciphertext c and two secret keys
SK0 and SK1 — both corresponding to PK — such that m0 = DSK1

(c) 6= DSK2
(c) = m1,

then the sender Bob of m0 cannot be sure that EPK(m0) will not decrypt to m1. This
is because it could happen that Alice’s secret key corresponding to PK is SK1, and Bob
was unlucky to generate EPK(m0) = c. Hence, the type of encryption we studied so far is
always binding. Not surprisingly, it is called a committing encryption.2 Summarizing our
comparison so far, we conclude

Lemma 1 A committing encryption implies a secure commitment scheme.

Proof: Assume E = (G, E, D) that is a CPA-secure PKE. We want to define a secure
commitment scheme C = (Setup, Commit, Open). This seems straightforward, since we can
let the encryption EPK(m) be our commitment, and the secret key SK be a “universal”
opening. There is only one minor difficulty in the this: where do we store the secret key
SK? Certainly, we cannot store it as part of the commitment key (why?). But then where
do we get it in order to open the commitment then? The answer is simple. We don’t need
the secret key: we can open c by demonstrating the randomness r used for encryption! We
get the following scheme:

(i) Let Setup(1k) output CK = PK, where (PK, SK)← G(1k).

(ii) Let (c, (m; r))← Commit(m; r), where r is chosen at random and c = EPK(m; r).

(iii) Let m̃← Open(c, (m; r)), where m̃ = m if c = EPK(m; r) and m̃ = ⊥ otherwise.

The fact that this is a secure commitment follows easily from the discussion above (and the
fact that E is committing).

If we examine the proof above, we see that the secret key was never used! This exemplifies
the crucial difference between commitment and encryption: encryption requires also the
ability to decrypt based on c and “universal” secret key (independent of the message), while
commitment allows to “decrypt” with message-dependent “secret key” d. In particular,
almost always d contains the message m in the clear. In fact, we can assume without loss of
generality that d = (m, r), and Open(c; (m, r)) simply checks if c = Commit(m; r) (notice,
the proof above followed this format), and outputs m if the check succeeds.

2In turns out that often people allow a more relaxed notion of encryption, where one can have a neg-
ligible probability of decryption errors. We will not talk about this further in this introductory course,
but remark that in certain applications, like secure multi-party computation and electronic voting, such
“non-committing” encryption is extremely useful.
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This makes the design of commitment schemes much easier that that of public-key
(committing) encryption. In particular, we will shortly see that the construction in Lemma 1
is an “overkill”: much simpler construction exist. However, we will also see that the close
similarity between commitment and encryption will make the former inherit some properties
of the latter.

Commitment and Signatures. There is also a much less obvious similarity between
commitments and (public-key) signatures. The bonding property of a commitment scheme
in some sense implies that the commitment c “validates” m, since c cannot be open to a
different value. However, this similarity is a bit far fetched. First, the “signature” c = c(m)
is not publicly verifiable. Namely, it requires the “signer” to release d. In fact, the hiding
property even implies that c does not even reveal the message “signed”! Also, the security
of signatures says that it is hard to forge a “new” signature. Here everyone can forge
signature, since the commitment key is public. Instead, it only says that it is hard to forge
a “signature” of a message which is equal to a “signature” of a different message. However,
the fact that both signatures and commitments cannot be shorter than the message makes
collision-resistant hash function very useful for both, as we shall see.

Who runs the setup algorithm Setup(1k)? In our definition CK is public information.
However it is not clear who generates it: the sender or the receiver. The problem is that
if a single party generates it, it can potentially generate it way that benefits this party.
For example, the recipient Alice might generate a CK that would always allow her to see
inside the locked box c and determine (partial information about) m; thus, breaking the
hiding property. On the other hand, the sender Bob might generate a CK that would allow
him to generate different values d that would open the locked box c in different ways; thus,
breaking the binding property.

It turns out this question is non-trivial. There are several answers. For the simplest
answer, we can assume it is done by a trusted third party, and then such key can be
subsequently used by any pair of (possibly untrusting) players. Such commitment scheme
are said to have “public parameters” (initialized by the trusted party). Of course, we often
would like to avoid this assumption. For another answer, in many of commitment schemes
(and most of the ones we present) it turns out that it is actually safe to let one specific
party (either sender or the recipient depending on the protocol) to run the key generation,
and simply announce the commitment key. For example, with committing encryption of
Lemma 1 we can let the sender generate this key (but cannot let the recipient do it; why?).
More generally, when the scheme is information-theoretically binding (i.e., the message is
hidden only computationally, but in theory is embedded into c) it is often the case that any
commitment key gives binding. Thus, the sender cannot choose a bad “binding key”, and it
is in his interests to choose a good “hiding key”. Similarly, when the scheme is information-
theoretically hiding (i.e., the message is independent from c, but it is computationally hard
to break the binding property) it is often the case that any commitment key gives hiding (or
it is possible to give a certificate that the key is “good hiding”). Thus, the recipient cannot
choose a bad “hiding key”, and it is in his interests to choose a good “binding key”. In such
cases we can let the recipient choose the key. Notice, however, if the recipient chooses a new
key for every message, the commitment scheme becomes interactive. And this is the basis
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for the third general answer. Namely, in some cases, the sender and the recipient choose
the key (or even perform the whole commitment stage) jointly, by running some interactive
protocol.

To summarize, the solution depends on the scheme in question. For simplicity, we
assume that the key is generated correctly by a trusted third party.

Asymmetry. Finally, a commitment scheme is slightly unfair to the recipient because
even though the sender commits to a value when sending c, the recipient has no way of
knowing what value the sender has committed to until the sender sends d. Therefore, the
sender can simply refuse to send the recipient d. It turns out, such asymmetry is inevitable
in two party protocols: one party always has an advantage in a sense of aborting the protocol
before the other party learned its output.3

2 Examples of Commitment Schemes

We already gave an example in Lemma 1 based on any committing encryption. As we
mentioned, this scheme is a bit of an “overkill”. We now give simpler constructions.

2.1 Commitment using PRG

2.1.1 One-bit Scheme

Given G that is a PRG : {0, 1}k → {0, 1}3k, define C = (Setup, Commit, Open) for M = {0, 1}
such that:

(i) R← Setup(1k), where R←r {0, 1}3k.

(ii) (c, (s, b))← Commit(b), where s←r {0, 1}k and c = G(s)⊕ (b ·R). The notation b ·R
means 0 ·R = 03k, and 1 ·R = R. Thus, c = G(s) if b = 0, and c = G(s)⊕R if b = 1.

(iii) m̃← Open(c, (s, b)), where m̃ = b if c = G(s)⊕ (b ·R), and m̃ = ⊥ otherwise.

2.1.2 Security

Hiding is achieved because c(0) = G(s)⊕(0·R) = G(s) and c(1) = G(s)⊕(1·R) = G(s)⊕R ≡
R and G(s) ≈ R by definition of G being a PRG. Now the question is whether or not the
scheme achieves binding. Consider two valid commitments (c, (s0, G)) and (c, (s1, G)) such
that Open(c, (s0, G)) = 0 and Open(c, (s1, G)) = 1 then G(s0) = c and G(s1) ⊕ R = c.
Thus G(s0) = G(s1) ⊕ R or written in a different way G(s0) ⊕ G(s1) = R. Now there are
at most 2k possible values for each G(s1) and G(s2) and at most 22k possible values for
G(s0)⊕G(s1) while there are 23k possible values for R. Thus,

PrR(∃ s0, s1 s.t. G(s0)⊕G(s1) = R) ≤
22k

23k
=

1

2k
= negl(k)

3This “advantage” can be made less and less at the expense of increasing the number of rounds, but it
will not concern us.
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The probability that s0 and s1 that would produce a collision with a random R even exist
is negligible, so the scheme achieves the binding property (information-theoretically).

Notice, this is an example of a scheme, where it is safe for the recipient to generate the
commitment key R.

2.1.3 More Bits

The are two ways to extend this scheme to commit to more bits. One is bit-by-bit composi-
tion (see Lemma 2), which would make the sender commit to each bit individually. It turns
out we can do better by directly extending the scheme above. For concreteness, assume the
message space is M = {0, 1}k (the method easily extends to any polynomial message size).
Now, consider the finite field F of cardinality 25k. The elements of this field are naturally
represented as 5k-bit string. Moreover, both the addition and the subtraction in such repre-
sentation coincide with the XOR operation ⊕ (because the field has characteristic 2). Let ·
now denote multiplication, and interpret every string m ∈M = {0, 1}k as 04k◦m ∈ {0, 1}5k,
so we can view m as a member of F . Now, we directly extend our scheme:

(i) R← Setup(1k), where R←r {0, 1}5k.

(ii) (c, (s, m)) ← Commit(m), where s ←r {0, 1}k, c = G(s) ⊕ (m · R) and addition and
multiplication are done in F .

(iii) m̃← Open(c, (s, m)), where m̃ = m if c = G(s)⊕ (m ·R), and m̃ = ⊥ otherwise.

The hiding is proven as before, since G(s) plus any fixed string looks pseudorandom.
As for binding, in order for G(s0)⊕ (m0 ·R) = G(s1)⊕ (m1 ·R), where m0 6= m1, we must
have

R = (G(s0)⊕G(s1)) · (m0 ⊕m1)
−1

where the inverse is taken in our field F . There are at most 24k values for the quantity
(G(s0) ⊕ G(s1)) · (m0 ⊕m1)

−1, so a random R ∈ {0, 1}5k can be of the above form with
probability at most 24k/25k = 2−k = negl(k), as before.

2.2 One-bit Commitment using OWP

2.2.1 The Scheme

Given f that is a OWP and h that is a hardcore bit for f , define C = (Setup, Commit, Open)
for M = {0, 1} as follows:

(i) Setup(1k) outputs the descryption of f and h (in case those are chosen from a family
of OWP’s).

(ii) (c, x)← Commit(b) where x←r {0, 1}k subject to h(x) = b, and c = f(x).

(iii) m̃← Open(c, x), where m̃ = h(x) if c = f(x) and m̃ = ⊥ otherwise.

In other words, we use the value f(x) to commit to its hardcore bit h(x).
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2.2.2 Security

Hiding is achieved because determining b from c(b) for a random b is equivalent to determing
h(x) from f(x) for a random x. Since h is a hardcore bit for f , no adversary can determine b
from c(b) and equivalently distinguish between c(0) and c(1) with greater than 1/2+negl(k)
probability. Binding is achieved information-theoretically, because f is a permutation, so
c = f(x) uniquely determines x, and thus b = h(x).

Notice, in this scheme either player can typically run the setup algorithm. The disad-
vantage of the scheme is that it only allows one to commit to one bit. If several bits of f are
simultaneously hardcore, we can use this scheme to commit to more bits, but one typically
does not use this scheme for committing to more than one (or very few) bits. Instead,
schemes given below are used.

2.3 Commitment using CRHF

Assume H is a collision-resistant family. Intuitively, it is very easy to achieve (computa-
tional) binding using a random h ∈ H, since h(x) commits one to the value of x. Unfortu-
nately, h(x) need not (and actually does not) hide all partial information about x, so we
need to do something more complicated to achieve hiding.

2.3.1 The Scheme

So assume H that is a CRHF from L to ℓ bits, let M = {0, 1}n and assume L ≫ ℓ +
n (the reason for this will be given later later). Finally, let U be a family of perfect
universal hash functions from L to n bits.4 Then we define the commitment scheme C =
(Setup, Commit, Open) for M = {0, 1}n as follows:

(i) h← Setup(1k), where h←r H.

(ii) (c, (u, x))← Commit(m), where x←r {0, 1}k, c = (u, h(x)) and u is a universal hash
function chosen fro U at random subject to u(x) = m.

(iii) m̃← Open(c, (u, x)), where m̃ = u(x) if c = (u, h(x)) and m̃ = ⊥ otherwise.

2.3.2 Security

Biding is achieved because a collision — necessarily of the form c = (u, y), d = (u, x),
d′ = (u, x′) — implies that h(x) = h(x′) = y, and since h is chosen at random from CRHF

family, the adversary is “forced” to use x = x′, but then we get m = u(x) = u(x′) = m′,
so the messages are not distinct. Hiding (which is information-theoretic, up to a negligible
statistical advantage) is much more difficult to prove. We will not do it, but notice that this
is where the condition L ≫ ℓ + n. Intuitively, h(x) reveals ℓ out of L bits of information
about randomly chosen x. Then, universally of U and the fact that L − ℓ ≫ n imply that
the choice of u — even subject to u(x) = m — still leaves the distribution of u look “almost
uniform” to the adversary, independent of m (this is the hard part). Thus, irrespective of

4This means that for any x0, x1 ∈ {0, 1}L, m0, m1 ∈ {0, 1}n we have Pru(u(x0) = m0 ∧ u(x1) = m1) =
Pru(u(x0) = m0) · Pru(u(x1) = m1).
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what the message m ∈ {0, 1}n is being committed, the adversary sees a randomly looking
u and the value h(x), where both h and x where random and independent of m.

We notice that the size of commitment for n-bit message is O(L) ≫ n (since u takes
O(L) bits to represent). We will see later how CRHF’s can also be used to decrease the
commitment size to O(ℓ), which could be much less than n.

2.4 Using Random Oracle

We leave this an a simple exercise to show that optimal5 commitment schemes are completely
trivial to build in the random oracle model (why?).

2.5 Pedersen commitment (using discrete log)

Finally, we give an example of a commitment scheme based on a specific number theoretic
assumption – the discrete log assumption. The scheme is called Pedersen commitment.

2.5.1 One-bit Scheme

Define C = (Setup, Commit, Open) such that:

(i) (p, g, y)← Setup(1k) where p is a prime, y is a randomly chosen element of Z
∗

p, and g
is a randomly chosen generator of Z

∗

p.

(ii) (c, (r, b))← Commit(b), where r ←r
Z
∗

p and c = gryb mod p.

(iii) m̃← Open(c, (r, b)), where m̃ = b if c = gryb and m̃ = ⊥ otherwise.

2.5.2 Security

Hiding is achieved (information-theoretically) because r is randomly chosen from Z
∗

p, and
therefore both c(0) = gr and c(1) = gry are also random elements of Z

∗

p. On the other
hand, finding r0, r1 such that Open(c, (r0, 0)) = 0 and Open(c, (r1, 1)) = 1 would require
that gr0 = gr1y. Then y = gr0−r1 , and the adversary would have computed the discrete log
of randomly chosen y: DL(y) = (r0 − r1) mod (p − 1). Hence, under the assumption that
discrete log is computationally hard the binding property is achieved.

2.5.3 Commitment for many bits

We extend the commitment scheme above to many bits by using the discrete log assumption
over Zp where p = 2q + 1 is a strong (k + 1)-bit prime (recall, this means that p = 2q + 1
where q is prime). We define C = (Setup, Commit, Open) over M = Zq as follows:

(i) (p, g, y) ← Setup(1k), where p = 2q + 1 is a strong (k + 1)-bit prime , and g is a
random generator of G = QR(Z∗

p), and y is a random element of G.

(ii) (c, (r, m))← Commit(m), where r ←r
Z
∗

q and c = grym mod p.

(iii) m̃← Open(c, (r, m)), where m̃ = m if c = grym, and m̃ = ⊥ otherwise.

5It is easy to see that in an optimal commitment scheme we have |c| ≈ k and |d| ≈ |m| + k, where k is
the security parameter.
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2.5.4 Security

Hiding is achieved as before information-theoretically, because r is chosen at random from
Z
∗

q , so grym is random in G, irrespective of m. On the other hand, finding (r0, m0) and
(r1, m1) such that m0 6= m1, Open(c, (r0, m0)) = m0, and Open(c, (r1, m1)) = m1 would
require that

gr0ym0 = gr1ym1 mod p

Then gr0−r1 = ym1−m0 mod p, which implies that

y = g(r0−r1)·(m1−m0)−1 mod q mod p

Notice, (m1−m0)
−1 mod q exists since m0 6= m1 and q is prime. Thus, the adversary would

have computed the discrete log of y base g: DLg(y) = (r0− r1) · (m1−m0)
−1 mod q. Since

y is randomly chosen, this contradicts the discrete log assumption over strong primes, so
the binding property is achieved as well.

3 Composition Properties of Commitment Schemes

3.1 Bit-by-bit Composition (many times usage)

First, we consider the question of whether the same commitment scheme could be securely
used multiple times. Equivalently, assuming we have a secure commitment scheme for small
message space — for concreteness, M = {0, 1}— can we build a secure commitment scheme
for larger message space by a simple bit-by-bit composition of the base commitment scheme.
As we saw, the answer to this question was positive in case of CPA-secure encryption, but
negative for the case of signatures. Luckily, the answer is also positive for commitment
schemes. Namely (for simplicity we state the result for M = {0, 1}, but it clearly holds for
any base commitment scheme),

Lemma 2 If C = (Setup, Commit, Open) is a secure commitment scheme for {0, 1}, then
C′, obtained from C by bit-bit-bit composition for p(k) times, is a secure commitment scheme
for {0, 1}p(k), for any polynomial p(k). In particular, a given commitment scheme can be
securely used for committing to multiple messages.

Proof Sketch: The proof that C′ satisfies the hiding property is the same as for the
case of encryption: use the hybrid argument and the fact that CommitCK(·) is a public
operation. The binding property is also similarly proven using the hybrid argument: finding
a collision for distinct m0, m1 ∈ {0, 1}p(k) implies finding a 0/1-collision at some position
i ∈ {1 . . . p(k)}.

3.2 Hash-then-commit with CRHF’s

Secondly, recall that hashing allowed for very compact signature schemes via “hash-then-
sign” paradigm. It turns out that the same can be done for commitment schemes, except
it is now called “hash-then-commit” paradigm. In essence, similar to signatures and unlike
encryption, we use the fact that commitment does not have to enable one to recover the
message; it should only be hard to collide two messages.
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Lemma 3 If H is a CRHF from L to ℓ bits and C′ = (Setup′, Commit′, Open′) is a secure
commitment scheme for ℓ-bit messages, then the commitment scheme C = (Setup, Commit, Open)
defined below is secure for L-bit messages:

(a) CK = (CK′, h), where CK′ ← Setup′(1k) and h← H.

(b) (c′, (d′, m))← CommitCK(m), where (c′, d′)← Commit′CK
′(h(m)).

(c) OpenCK(c′, (d′, m)) = m̃, where m̃ = m if Open′
CK

′(c′, d′) = h(m), and else m̃ = ⊥.

Proof Sketch: The hiding property follows easily from that of C′: Commit′(h(m0)) ≈
Commit′(h(m1)). For the binding property, a collision triple (c′, (d′0, m0), (d

′

1, m1) either
implies that h(m0) = h(m1) — a collision to h — or that (c′, d′0, d

′

1) form a collision for the
pair h(m0) 6= h(m1).

In particular, we remark that by combining the hash-then-commit technique with the
commitment scheme of Section 2.3, we get extremely compact and efficient commitment
schemes based on CRHF’s, where the size of the commitment to arbitrarily long messages
can be as small as the security parameter.

Using UOWHF’s? Is is interesting to see if the technique above can work if we replace
CRHF’s with UOWHF’s (picking a fresh h ∈ H for every commitment), like we had with
digital signatures. A moment reflection shows that the answer is negative (why? take a look
at the binding property). However, it turns out that UOWHF’s can be used, as prescribed
above, with a slight relaxation of regular commitment schemes, called relaxed commitments.
As we will see, this relaxed notion suffices for some important applications of commitment,
so we treat it next.

3.3 Relaxed Commitments and UOWHF’s

We now consider relaxed commitment schemes, where the (strict) binding property of regular
commitment schemes is replaced by the Relaxed Binding property. Informally, having
the knowledge of CK, it is computationally hard for the adversary A to come up with a
message m, such that when (c, d) ← Commit(m) is generated, A(c, d, CK) produces, with
non-negligible probability, a value d′ such that (c, d′) is a valid commitment to some m′ 6= m.
Formally, for any PPT A = (A1, A2),

Pr
[ m 6= m′ ∧

m, m′ 6= ⊥

∣

∣

∣

CK← Setup(1k), (m, α)← A1(CK), (c, d)← CommitCK(m),
d′ ← A2(c, d; α), m′ ← OpenCK(c, d′)

]

≤ negl(k)

Thus, A cannot find a collision using a randomly generated c(m), even for m of its choice.
As we shall see, (1) relaxed commitment suffice for some important applications of

commitment schemes (see authenticated encryption later), (2) UOWHF’s can be used in
the “hash-then-commit” paradigm, (3) relaxed commitments could be a bit “easier”6 to
construct than regular ones. We start with point (2).

6Obviously, both notions are equivalent to OWF’s.
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Lemma 4 If H is a UOWHF from L to ℓ bits with key size p and C′ = (Setup′, Commit′, Open′)
is a secure relaxed commitment scheme for ℓ-bit messages, then the relaxed commitment
scheme C = (Setup, Commit, Open) defined below is secure for L-bit messages:

(a) CK = CK′, where CK′ ← Setup′(1k).

(b) ((c′, h), (d′, m))← CommitCK(m), where (c′, d′)← Commit′CK
′(h(m)) and h← H.

(c) OpenCK((c′, h), (d′, m)) = m̃, where m̃ = m if Open′
CK

′(c′, d′) = h(m), and else m̃ = ⊥.

Proof Sketch: The hiding property follows easily from that of C′: Commit′(h(m0)) ≈
Commit′(h(m1)). For the relaxed binding property, since a fresh h ∈ H is chosen for every
message and is part of the commitment c = (c′, h), a collision triple ((c′, h), (d′0, m0), (d

′

1, m1)
either implies that h(m0) = h(m1) — a collision to h that was chosen at random and after
m0 — or that (c′, d′0, d

′

1) form a collision for the pair h(m0) 6= h(m1), where again c′ was
chosen honestly corresponding to h(m0).

The result above is not surprising, since in the relaxed binding property, just like in
the security of UOWHF’s, the commitment/hash function is chosen honestly after the first
message is selected. This finishes point (2) above.

As for point (3), consider the construction of commitments from CRHF’s, explained in
Section 2.3. We notice that replacing a CRHF by a UOWHF (where a fresh function is
chosen per every message) will result in a secure relaxed commitment. The proof is left as
an exercise. To summarize, the relation between CRHF’s and UOWHF is very similar to
that between regular and relaxed commitments.

4 Applications of Commitment Schemes

4.1 Bidding and Auctions

Consider the following example. A potential buyer Bob is happy to buy some item for
any price less than the buying price b. A potential seller Alice is happy to sell the item
for any asking price greater than the asking price a. Let us assume that a ≤ b, but the
quantities a and b are initially kept secret by Alice and Bob. Assume Alice and Bob agree
on a fair protocol where the item is traded for the average price p = a+b

2 . One naive
protocol would be for Alice tell a to Bob, then for Bob tell b to Alice, and then compute
the average c. Unfortunately, in this case Bob will certainly report b′ = a, making p′ = a
as well. Similarly, if Bob goes first, Alice will report a′ = b resulting in p′ = b. Clearly,
what we need is exactly a commitment. First, Alice commits to the value a and tells her
commitment to Bob: c = c(a). The hiding property ensures that Bob learns nothing about
a from c. Then Bob tells the value b to Alice. Then Alice opens c to a by sending the
opening information d = d(a). The binding property ensures that she can open it in only
one way. Then both players compute p = a+b

2 .
The example above can be generalized to more complicated situations, like auctions.

But the point is clear. First, one party commits to some value, then it learns some other
information, after which it opens the committed value. We notice the (necessary) weakness
of this: the player can always refuse to open the commitment. In some applications, like the
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simple buyer/seller game, this does not create serious problems, but in more complicated
examples it could result in some unfairness.

We only remark that one has to be careful in such applications. Aside from the problem
of commitment key generation discussed earlier, there is also the problem of non-malleability,
similar to the case of encryption. We will not deal with it here.

4.2 Coin-Flipping

Assume Alice and Bob want to jointly flip a fair coin. For example, they agree that if the
coin comes heads, they go to the opera, else they go to the soccer game. Naturally, Bob
wants the opera, so he is bound to cheat if Alice asks him to select the (digital) outcome
of the coin. Similarly, letting Alice do so will certainly result in a field trip to a soccer
stadium. This shows that both Alice and Bob should somehow participate. But what can
they do together?

The answer, next best to actually flipping a physical coin, is that they should design
an interactive protocol where neither player can influence the outcome by a non-negligible
amount. A first naive attempt is the following: Alice sends Bob a random bit a ∈ {0, 1},
then Bob tells Alice a random bit b ∈ zo, and they output a joint coin flip f = a ⊕ b.
Clearly, however, in this case we might as well let Bob — the second player to go — select
the coin. However, using commitments we can actually fix this protocol.

First, Alice commits to her (supposedly random) bit a, and sends c = c(a) to Bob. Bob
then sends a (supposedly random) bit b to Alice. Then Alice opens c to a by sending the
opening information d = d(a). Finally, both player output the value f = a⊕ b.

Showing that the above simple protocol is “good” is actually non-trivial in the following
sense: we first need to give a formal definition of what a secure coin-flipping protocol
is! The latter is indeed tricky. For example, a naive attempt might be to say that both
Pr(f = 0), Pr(f = 1) ∈ [12 − negl(k), 1

2 + negl(k)]. However, the protocol above does not
(and, in fact, no protocol can!) satisfy this strong property. The reason is that Alice, who
learns the coin value first, might refuse to open a if the coin flip f = 0. This way, Bob will
never see f = 0. It turns out that more or less the best we can do is that both Pr(f =
0), Pr(f = 1) ≤ 1

2 +negl(k), so no value can be forced with “unreasonable” probability, even
though one or both parties can prematurely terminate the protocol, possibly based on the
final “ideal” outcome f . In our protocol, Alice has this ability, while Bob cannot abort the
protocol in a way that is dependent on f (by the hiding property of commitments).

We omit more formal treatment, but mention that the protocol above can be shown to
satisfy the formal definition of coin-flipping, as outlined above.

4.3 Authenticated Encryption and Relaxed Commitments

We have already earned something about authenticated encryption from the homework.
While encryption provides privacy against eavesdropping, and signatures/MAC’s validate
the sender and the integrity of the message, in many situations one wants to achieve both
privacy and authenticity simultaneously. Authenticated encryption makes sense for both
private and public settings. For concreteness, we concentrate below on the public setting.
In this case, authenticated encryption is also sometimes called signcryption.
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We briefly sketch how a commitment scheme C can be used to achieve efficient secure
signcryption — from a secure encryption scheme E and a secure signature scheme S (below,
E(m) denotes the encryption of m, and S(m) denotes a message/signature pair (m, σ),
i.e. the signature includes the message signed). The two naive way to build signcryption
are those of sequential composition. Namely, E(S(m)) and S(E(m)). Under reasonable
definitions, both of these methods indeed yield a secure signcryption. However, they have a
potential disadvantage that two expensive public-key operations — signing and encrypting
— are done sequentially one after another. Below we show a new method where (usually,
quite cheap) commitments allow to perform these operations in parallel.

First, two auxiliary lemmas, each being interesting, but “useless” on its own.

Lemma 5 (c, E(d)), where (c, d) ← Commit(m), is a secure encryption scheme if and
only if C satisfies the hiding property of commitment schemes. Decryption is done by first
decrypting d, and then returning Open(c, d).

Proof Sketch: We use the hiding property of commitment scheme. Intuitively, c does
not revel any information about m, so so does E(d), since E is a secure encryption. The
converse is clear as well.

The reason the lemma by itself is “useless” is we might encrypt m directly using a secure
encryption E: just return E(m).

Lemma 6 (S(c), d), where (c, d) ← Commit(m), is a secure signature scheme if and only
if C satisfies the relaxed binding property of commitment schemes. Verification is done be
verifying the signature of c and checking Open(c, d) 6= ⊥.

Proof Sketch: We use the relaxed binding property since the pair (c, d) binds one to the
message, so it is hard to reuse a valid signature (S(c), d) corresponding to some m (i.e.,
c = c(m)) to produce a forgery (S(c), d′) for m′: this will create a collision (c, d, d′). Thus,
the forger is forced to forge a “new” signature S(c′), but this is impossible since S is a
secure signature scheme. The converse is simple as well.

We make two comments here. First, as with the previous lemma, this lemma by itself is
useless: one might either sign m directly, or use much cheaper hash-sign-method, if the size
of the signature is an issue. Secondly, the lemma above shows that relaxed commitments
are sufficient for the above applications (so UOWHF’s can be used).

Now, we combine the above two lemmas and give the following theorem.

Theorem 1 (S(c), E(d)), where (c, d) ← Commit(m), is a secure signcryption if and only
if C is a secure relaxed commitment scheme (decryption and verification is as in the above
lemmas). In particular, it is secure with any regular commitment scheme.

This result is actually useful, since the expensive public key operations are indeed done
in parallel. More optimizations of the above idea are possible (i.e., on-line/off-line signcryp-
tion), but we omit the details.
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4.4 Zero-Knowledge

We will not give any details here, but zero-knowledge proofs allow one to proof the validity
of some statement or possession of some secret, without revealing any information beyond
a validity of the statement proved, or the possession of the secret in question. For a simple
example, one can prove that a number a ∈ Z

∗

n is a quadratic residue without revealing the
square root of a! For another example in the second category (proofs of knowledge), one
can proof the knowledge of the value x such that gx = y mod p without revealing x!

No need to say, the study of zero-knowledge proofs is of fundamental importance in
cryptography. It turns out that commitment schemes allow one to prove an amazingly
powerful statement (do not worry if this makes no sense now): any language in the (huge)
complexity class NP has a (computational) zero-knowledge proof.

4.5 Password Authentication and Identification Schemes

Recall the usage of OWF’s for password authentication. The server stores the value f(x) in
a public file, and the user authenticates by presenting a value x. As an alternative, we can
use commitment schemes. Namely, we let (c, d) ← Commit(x), store c on the server, and
present d during authentication (which succeeds if Open(c, d) 6= ⊥). This more complicated
schemes has several minor advantages over the scheme with OWF’s: (1) the distribution of x
does not have to be uniform; (2) even knowing x does not let one authenticate successfully;
(3) the value c reveals no partial information about x. In practice, however, the above
advantages are not essential, since one still needs to remember the value d (which is longer
than x, for example).

We remark that password authentication schemes above have a serious weakness in that
they trust the server (or assume that nobody snoops during authentication). Specifically,
snooping the password x or the opening value d allow the adversary unlimited future access.
It turns out that by combining either one of the above scheme with an appropriate zero-
knowledge proof — where the user proves to the server the knowledge of the corresponding
authentication information (i.e., x such that f(x) = y, or d such that Open(c, d) 6= ⊥)
without revealing this information — allow one to make up a secure identification scheme.
Specifically, an identification scheme remains secure for the future, even if the adversary
manages to listen in during user authentication, and even if it plays the role of the server with
the honest user! Intuitively, the only thing such an adversary learns is that the user indeed
possesses correct secret information, but this does not help the adversary to impersonate
the user, since the adversary new that the user is “legal” to begin with!

We will study this more formally a bit later, after we talk about zero-knowledge in more
detail.

4.6 Trapdoor Commitments

This is not an application by itself. Rather, it is a stronger type of commitment, with one
additional property. We will not give more detail now, but remark that trapdoor commit-
ments have found numerous applications including on-line/off-line signatures, chameleon
signatures, certified e-mail, zero-knowledge and general multi-party computation.
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Zero-Knowledge Proofs [GMR85] 
 

• Interactive proofs that reveal nothing other 
than the validity of assertion being proven 

 
 

• Central tool in study of cryptographic 
protocols 
– In particular, central in multi-party computation 

 
 

• Source of interaction between cryptography 
& complexity theory 



Outline 
• Interactive Proofs 

– Classes NP and IP 
 

• Zero-Knowledge proofs 
– NP has ZK proofs 
– Proofs of Knowledge 
– Honest-Verifier (-Protocols) 

 

• Composition and Concurrency Issues 
– Universal Composability, Global setup, … 



Proofs  

• Prover P wants to prove to Verifier V some 
statement S is true 

• Witness of S: string w s.t. V can check S is 
true using w 

– Example: S = “Second bit of Dlog(y) is 0”, then      
w = Dlog(y). Test by seeing w2=0 and gw = y 

• NP = class of problems where each true 
statement has a witness, and false 
statements do not have any witnesses 

– Note, witness might be hard to find, but always 
easy to check ! (big question: P  NP?) 



NP, formally 
 

• Def: A proof system for a language L is a poly-
time  algorithm V (“verifier”) s.t. 
– Completeness (“true assertions have proofs”): 

 xL   proof  s.t. |proof | poly(|x|) and V (x, proof )=accept 

– Soundness (“false assertions have no proofs”): 

 xL   proof *  V (x, proof *)=reject 

 

 

• NP = class of languages w/ proof systems. 



GRAPH 3-COLORING 

• Def: A 3-coloring of a graph is an assignment of 
“colors” in {  ,  ,  } to vertices s.t. no pair of 
adjacent vertices are assigned the same color.  
 

•   Prop: 3-COL = {G : G  is 3-colorable} is in NP. 

a 3-colorable graph a non-3-colorable graph 



NP-completeness 

• Def: A language L is NP-complete if 
– L2 NP 

– Every language in NP “reduces” to L 

 

• Thm [C71,L72,K72]:  3-COL is NP-complete. 

 

 
 

P 

NP 

NPC 

P=NP P 
NP NPC 

probable conceivable impossible! 

NPC 



New Ingredients 

• Classical NP proofs inherently non-zero-
knowledge. 
– Verifier gains ability to prove x2L to others. 

 

• Randomization: verifier can “toss coins” 
– Allow verifier to err with small probability 

 

• Interaction: replace static proof  with 
dynamic, all-powerful prover 

– Will “interact” with verifier and try to 
“convince” it that assertion is true. 



Interactive Protocols 

• Alice, Bob are functions :  

(common input, random coins, previous msgs)(next msg) 
 
• messages * {accept, reject, halt} 

 
• Require protocol to be polynomially bounded: lengths of all 

msgs & # of messages  poly(|x|).  

a1 

b1 

a2 

ak 

Bob Alice 

bk 

Common Input x 
Random coinsB Random coinsA 



Interactive Proofs [GMR85,B85] 

Def: An interactive proof system for a language L 

is an interactive protocol (P,V) where 
 

• V is poly-time computable. 
 

• Completeness: If xL, then  

  V accepts in (P,V)(x) with probability 1 
 

• Soundness: If xL, then for every P*, 

   V accepts in (P*,V)(x) with probability  1/2 

 

Def: IP = { L : L has an interactive proof } 



Comments on Definition 

• Asymmetry between “yes” and “no” instances 
 

• Probabilities taken only over coin tosses, not over input. 
– Exercise: if V is deterministic, IP would collapse to NP 

 

• Can reduce error probability (in soundness) to 2-1000 with 
1000 repetitions. 
 

• Interactive proofs generalize classical proofs: NPIP. 
 

• IP seems much bigger: IP=PSPACE [LFKN90,S90] 



Example: Graph Isomorphism 

• The graphs G1=(V1,E1) and G2=(V2,E2) are called 
isomorphic (denoted G1G2) if there exists a 1-1 and onto 
mapping :V1V2 such that (u,v) E1 iff ((u),(v)) E2.  

• A mapping  between two isomorphic graphs is called an 
isomorphism between the graphs. 

• If no such mapping exists, the graphs are called non-
isomorphic.   

• We define the languages  
– GI={(G1,G2): G1 and G2 are isomorphic} 

– GNI={(G1,G2): G1 and G2 are non-isomorphic} 

• We will use these language in order to demonstrate the 
power of interactive proofs. 



Isomorphic Graphs 
• Take these two graphs  

• Although they seem very different, they are in fact isomorphic.  



Observations 
• Clearly, GI is in NP 

– Isomorphism is the witness. Unlikely to be NP-complete 

• Interestingly, GNI it is not known to be either in 
NP, or to be NP-hard (both seem unlikely) 

– Hard to check that no isomorphism exists  

• Question 1: how can a Prover convince a Verifier 
that two graphs are non-isomorphic (without 
“having” the witness)? 

• Question 2: how can a Prover convince a Verifier 
that two graphs are isomorphic without revealing 
the isomorphism? 



An Interactive Proof for GNI 

• Common Input: G1=({1,...,n},E1) and G2=({1,...,n},E2) 

• The Verifier chooses randomly i in {1,2} and a permutation 

 of {1,...,n}. 

• Then it applies  on the i-th graph to get: 

H=({1,...,n},{((u),(v)):(u,v)Ei})  

• And sends H to the Prover. 

• The Prover sends j{1,2} to the Verifier. 

• The Verifier accepts iff i=j. 



• The verifier chooses one of the two 
graphs randomly. 

• The verifier constructs randomly a graph 
isomorphic to the graph it chose. 

The common input 

• The verifier sends the prover the graph 

• If the two input graphs are truly 
non-isomorphic, the prover can 
find which of the two graphs is 
isomorphic to the graph he 
received from the verifier, and 
send it the correct answer.  

• The verifier can check the answer easily (The 
verifier knows which graph was chosen) 

The Prover 

The Verifier 

An Interactive Proof for GNI 



The protocol is IP 

• Completeness: 
If G1 and G2 are non-isomorphic, the graph the 
verifier sends is isomorphic to only one out of 
the two graphs, thus the prover can always send 
the correct answer. 

 

• Soundness: 
If G1 and G2 are isomorphic, then, since the 
verifier chooses i randomly, the probability that 
j=i is at most ½.  



Is this “ZK”? 

• Yes !  
– V knows in advance the response of P… 

 

• Or does he??? 
– What if V chose H in a different way?  

– Then he learns which graph H is isomorphic to 

 

• So maybe No? (stay tuned) 



An Interactive Proof for GI 

• Common Input: G1=({1,...,n},E1) and G2=({1,...,n},E2) 

• Prover knows (can find) permutation r from G2 to G1  

• The Prover choose a random permutation  of {1,...,n} 

• Then it applies  on the G1 to get: 

H=({1,...,n},{((u),(v)):(u,v)E1})  

• And sends H to the Verifier. 

• The Verifier sends random j{1,2} to the Prover. 

• If j=1, Prover sends t =  to Verifier, else he sends t = r 

• The Verifier checks that t (Gj) = H  

– If j=1, then (G1) = H  

– If j=2, then (r(G2)) = (G1) = H  



 Picks random H isomorphic to G1 

j=1 

The common input 

And if j was 2, I would have shown this ! 

Open isomorphism to G1 

The Prover 

The Verifier 

An Interactive Proof for GI 
 Knows the isomorphism! 

Here you go 



The protocol is IP 

• Completeness: 
If G1 and G2 are isomorphic, the graph the prover 
sends is isomorphic both of the graph, and he can 
find the isomorphism. 

 

• Soundness: 
If G1 and G2 are non-isomorphic, then any H is 
not isomorphic to at least one of them, and since 
the verifier chooses j randomly, he catches the 
prover with probability at least ½.  



Is this “ZK”? 

• Yes !  

– He only learned a random graph isomorphic to one of 
the input graphs 

 

• More formally, given his challenge j, V knows how 

to prepare H and t such that t(Gj) = H : 

– Pick t at random and set H = t(Gj) 

 

• Tricky question: but what if Verifier did not 
choose j at random? 

– Is it ZK? Stay tuned… 



What about all of NP? 

• Previous “ZK protocols” were unconditional 

 

• Can we build unconditional ZK protocol for all of 
NP? 

– Possible, but very unlikely [GO92,Vad04]  

 

• Nevertheless, possible to build “computationally 
secure” ZK protocol for all of NP [GMW91] ! 

– Efficient prover given the witness 

– Can even extend to all of IP = PSPACE ! 
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ZK Proof for 3-COL 

poly-time 

Verifier 

unbounded 

Prover 

1. Randomly permute 
coloring & send in 
locked boxes. 2. Pick random edge.  

(1,4) 

1 

2 

3 

4 

5 

6 

4. Accept if colors different.  
3. Send keys for 

endpoints. 

  
(Perfect) Completeness:  graph 3-colorable ) V accepts w.p. 1 



ZK Proof for 3-COL 

poly-time 

Verifier 

unbounded 

Prover 

1. Randomly permute 
coloring & send in 
locked boxes. 2. Pick random edge.  

(1,4) 

1 

2 

3 

4 

5 

6 

Soundness:  graph not 3-colorable ) 8 P*  V rejects w.p. ¸ 1/(#edges) 

4. Accept if colors different.  
3. Send keys for 

endpoints. 

  



ZK Proof for 3-COL 

poly-time 

Verifier 

unbounded 

Prover 

1. Randomly permute 
coloring & send in 
locked boxes. 2. Pick random edge.  

(1,4) 

1 

2 

3 

4 

5 

6 

Zero Knowledge:  graph 3-colorable ) V sees two random distinct colors 

4. Accept if colors different.  
3. Send keys for 

endpoints. 

  



How to implement boxes?    
Commitment Schemes 



How to implement boxes?    
Commitment Schemes 

Receiver Sender 

m2{0,1} 

m 

Commit phase 

Reveal phase 

m 



How to implement boxes?    
Commitment Schemes 

Receiver Sender 

m2{0,1} 

Commit phase 

Reveal phase 

Hiding property: receiver learns nothing about m from 

commit phase. 



How to implement boxes?    
Commitment Schemes 

Receiver Sender 

m2{0,1} 

Commit phase 

Reveal phase 

Binding property: sender cannot change m after commit 
phase. 



Commitment Schemes 
• Bit-commitment (noninteractive):  

poly-time computable Com(m,K) s.t. 

– Hiding: For random K1 , K2 

Com(0, K1) & Com(1, K2)  

computationally indistinguishable 

() zero knowledge) 

– Binding: Com(0, ¢) & Com(1, ¢)  
disjoint () soundness) 

• Collision-resistance enough:  
– Hard to find K1 and K2 s.t. Com(0, K1) = Com(1, K2)  

• Thm [N89,HILL90]: 9 one-way functions  
) 9 (interactive) bit-commitment schemes. 

• Simpler constructions from factoring, discrete log, … 
– Perdersen: Com(b; K) = gK hb mod p 

– Binding: gK1  = gK2 h  ) Dlogg(h)  = K1 – K2 mod q     (q - group order) 

Sender 
input m 

Receiver 

commit: 

z=Com(m,K) 

reveal: 

(m,K) 



ZK Proof for 3-COL 

poly-time 

Verifier 

unbounded 

Prover 

1. Randomly permute 
coloring & send in 
locked boxes. 2. Pick random edge.  

(1,4) 

1 

2 

3 

4 

5 

6 

4. Accept if colors different.  
3. Send keys for 

endpoints. 

  

Com(  )…Com(  ) 

(  ,K1),(  ,K4) 

Zero Knowledge:  graph 3-colorable ) V sees two random distinct colors 



Formalizing Zero Knowledge 

Simulation Paradigm 

Verifier learns nothing if 
it could have 

“simulated” the 
interaction on its own. 
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Def: (P,V) is honest verifier zero knowledge if  
 9 poly-time S s.t. when x2 L 

S(x) is computationally indistinguishable from (P,V )(x) 
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Def: (P,V) is honest verifier zero knowledge if  
 9 poly-time S s.t. when x2 L 

S(x) is computationally indistinguishable from (P,V )(x) 
gives Deniability: 

V can run the 
simulator in his 
head instead of 

talking to P! 



Is this a good definition? 
• Yes !  

– GI, GNI, 3-COL protocols had very simple 
simulators… against honest V 

• No !  
– But what if V does not follow the protocol? 

• GNI example: learns which graph is isomorphic 
to a given H, something he maybe did not know! 
– Is it the problem for GI and 3-COL? 

– No, but more complicated analysis (stay tuned)… 

• Called honest-verifier ZK (HVZK) 
– Still very useful in many situations (stay tuned)! 
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Def: (P,V) is zero knowledge if  
8 poly-time V* 9 poly-time S s.t. when x2 L 

S(x) is computationally indistinguishable from (P,V*)(x) 

gives Deniability: 
V* can run the 
simulator in his 
head instead of 

talking to P! 



Simulator for 3-COL Protocol 

1. Randomly guess 
verifier’s challenge, 
e.g. (2,6) 
 

2. Prepare commitments. 
 

3. Run verifier. 
 

4. If guessed correctly, 
complete simulation. 
Else try again. 
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1. Randomly guess 
verifier’s challenge, 
e.g. (2,6) 
 

2. Prepare commitments. 
 

3. Run verifier. 
 

4. If guessed correctly, 
complete simulation. 
Else try again. 
 
 

1 

2 

3 

4 

5 

6 

(2,6) 

Can argue succeed 
after roughly n2 

tries, so “efficient” 
simulation.  

Details tricky! 



Flavors of Zero-Knowledge Proofs 

• Quality of ZK/Simulation: 
– Perfect (PZK), Statistical (SZK), Computational (ZK) 

• Verifier strategies considered: 
– Public-coin (ala GI) vs. private-coin (ala GNI).  

• Turns out equal (costs at most 2 rounds!) [GS90] 

– Honest-verifier ZK (HVZK) vs. general ZK (ZK) 

• Prover Efficiency: 
– Poly-time (for NP, with witness) vs. unbounded 



Flavors of Zero-Knowledge Proofs 

• Quality of ZK/Simulation: 
– Perfect (PZK), Statistical (SZK), Computational (ZK) 

• Verifier strategies considered: 
– Public-coin (ala GI) vs. private-coin (ala GNI).  

• Turns out equal (costs at most 2 rounds!) [GS90] 

– Honest-verifier ZK (HVZK) vs. general ZK (ZK) 

• Prover Efficiency: 
– Poly-time (for NP, with witness) vs. unbounded 

• Soundness:   
– Proof systems: secure even against unbounded provers 

– Arguments: only sound against poly-time provers  
• Why? Efficiency, can do with polylog communication [Kil92,Mic92] ! 

– Proofs/arguments of knowledge 
• P not only proves that the statement is true, but that he knows the 

witness ! 

Thm [BP92,V04,NV05]:   

Every  2 ZK Å NP has a zero-
knowledge proof where prover 
can be implemented in poly-
time given an NP witness. 
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Are current ZK proofs also PoK? 
• NO! Look at GI and 3-COL protocols 

– Easy to cheat with probability ½ and (1 – 1/|E|), respectively ! 
• Just guess the verifier challenge and run the simulator 

– These correspond precisely to the soundness of the ZK proof 

 

• More robust definition: (P,V) is a Proof of Knowledge 
with error p if 9 poly-time extractor E s.t. 8 poly-time 
P*, if P* convinces V with probability non-negligibly 
greater than p, then EP*(x) outputs a witness w for x 
– Note: PoK with error p implies soundness error p 

 

• Now, can show GI and 3-COL are PoKs with error ½ and 
(1-1/|E|), respectively 
– If P* can show a graph isomorphic to both G1 and G2, then easy 

to recover isomorphism between G1 and G2 



Reducing the Error? 

• Make sense for both soundness and PoK 

– For PoK can even try reducing to 0 (impossible for soundness) 

• Sequential Repetition: always works, but many rounds  

• Parallel Repetition:  

– Works for soundness , does not always work for PoK  

– Works for PoK of specific protocols, including GI and 3-COL  

• Problem: does not necessarily preserve zero knowledge ! 

– Honest-verifier ZK is preserved with parallel repetition, but… 

– For general ZK cannot guess a long challenge with good prob. 

– In fact, parallelized 3-round 3-COL protocol is unlikely to be ZK 



Reducing the Error? 

• Make sense for both soundness and PoK 

– For PoK can even try reducing to 0 (impossible for soundness) 

• Sequential Repetition: always works, but many rounds  

• Parallel Repetition:  

– Works for soundness , does not always work for PoK  

– Works for PoK of specific protocols, including GI and 3-COL  

• Problem: does not necessarily preserve zero knowledge ! 

– Honest-verifier ZK is preserved with parallel repetition, but… 

– For general ZK cannot guess a long challenge with good prob. 

– In fact, parallelized 3-round 3-COL protocol is unlikely to be ZK 

• Question: can we have constant-round ZK proof (or PoK) 

with negligible soundness error? (stay tuned) 

Thm [GK90]:   

Only “trivial” languages 
have 3-round “black-box” 
ZK proofs with negligible 
soundness error 



Important Issues 
• Soundness error 

– Can be reduced by sequential repetitions 
– ZK not preserved under parallel repetition [FS90,GK90] 

 
• Interaction 

– Constant rounds with negligible error? [FS89,GK88] 
– Non-Interactive (one-message) ZK (NIZK)? [BDMP91] 

 
• Composability 

– Design protocols that remain ZK under concurrent, person-in-the-
middle, reset, … attacks. [F90,DNS98,DDN90,CGGM00,…] 

 
• Efficiency 

– Practical protocols for specific problems (like e-cash, anonymous 
credentials) 

 
• Minimizing complexity assumptions 

–  9 commitment schemes , 9 one-way functions ) PNP 
 

• Deniability and Transferability of Proofs 



Important Issues 
• Soundness error 

– Can be reduced by sequential repetitions 
– ZK not preserved under parallel repetition [FS90,GK90] 

 
• Interaction 

– Constant rounds with negligible error? [FS89,GK88] 
– Non-Interactive (one-message) ZK (NIZK)? [BDMP91] 

 
• Composability 

– Design protocols that remain ZK under concurrent, person-in-the-
middle, reset, … attacks. [F90,DNS98,DDN90,CGGM00,…] 

 
• Efficiency 

– Practical protocols for specific problems (like e-cash, anonymous 
credentials) 

 
• Minimizing complexity assumptions 

–  9 commitment schemes , 9 one-way functions ) PNP 
 

• Deniability and Transferability of Proofs 

Many of these questions  
can be (partially) answered  

using -protocols ! 



-Protocols 

• “Special” 3-round HVZK PoK: 

Verifier Prover “commitment” a 

“challenge” c 

“response” z Accept 

• Special HVZK:   
– Know c in advance  can fake proofs for any x, even x  L  

input x witness w 
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– Implies HVZK: Sim picks random c and fakes consistent (a,z) 
– Not general ZK: what if c depends on a ? 
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• “Special” 3-round HVZK PoK: 

Verifier Prover “commitment” a 

“challenge” c 

“response” z Accept 

• Special HVZK:   
– Know c in advance  can fake proofs for any x, even x  L  
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– Know two distinct conversations with same a  recover witness w 
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Example: Knowledge of DL 

Verifier Prover  a = gr  

random c 

z = r – cx 
Accept iff 

a = gz yc 

• Special HVZK:   
– Know c in advance  pick random z, and let a = gz yc 

• Special soundness:   

– Know accepting (a, c1, z1), (a, c2, z2)      a = gz1 yc1 = gz2 yc2 

            x = (z1 – z2) / (c2 – c1) 

input  
y = gx 

witness x 



Example: Knowledge of DL 

Verifier Prover  a = gr  

random c 

z = r – cx 
Accept iff 

a = gz yc 

• Special HVZK:   
– Know c in advance  pick random z, and let a = gz yc 

• Special soundness:   

– Know accepting (a, c1, z1), (a, c2, z2)      a = gz1 yc1 = gz2 yc2 

            x = (z1 – z2) / (c2 – c1) 

input  
y = gx 

witness x • Notice, corresponds to trivial language, but 
PoK aspect non-trivial 

• Generalizes to proving knowledge of 
discrete log representation (very useful 
for commitments) 

• With more work, can prove extremely non-
trivial relations in the exponent (e-cash, 
etc. come from here) 

• Thm: OWFs  -Protocols for any L  NP 
(no special soundness in 3COL protocol, use 
HamCycle instead [FLS90]) 



More on -Protocols 

• Most abundant technique for building ZK proofs! 

– GI example was a -protocol (3-COL was not, but “close”) 

– Can have -protocols for NP-complete languages (Hamiltonicity) 

– Very useful (and natural) for number-theoretic relations 

• Properties of -protocols: 

– Can be repeated in parallel (maintains special HVZK/soundness) 

–  -protocols for A and B  -protocols for (A  B) and (A  B). 

• For (A  B), V uses same challenge c for A and for B 

• For (A  B), let P split c = c1+c2 and prove A with c1, B – with c2 

– Witness-indistinguishable, very useful for (A  B): 

• E.g., “Either I know my Sig(m) or I know your secret key” 

• Useful for more advanced flavors of ZK, but also other 

things (signatures, trapdoor commitments, …) 



Constant-Round ZK [GK88] 
• Start with -protocols w./negligible soundness 

Verifier Prover a  

c 

z 
Check (a,c,z) 

• Add commitment round: let V commit to his challenge c 
• Then open it after P sent his commitment a 
• P will also check that the commitment is properly opened 

• Soundness: by hiding of C, flow a still cannot depend on c 

input x witness w 

C=Com(c;r) 

, r 

C=Com(c;r) 
? 
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• Add commitment round: let V commit to his challenge c 
• Then open it after P sent his commitment a 
• P will also check that the commitment is properly opened 

• Soundness: by hiding of C, flow a still cannot depend on c 
• ZK: Simulator can “extract” c from V* and “rewind” 

input x witness w 
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• Get C from V* 

• Give “random” a* 
• Learn opening c 
• Fake random   

accepting (a, z) 
for this c 

• Rewind  V* ! 

• Use (a, z) with V* 
on the same C  

• “OK” as V* must 
still open C to c 



Constant-Round ZK [GK88] 
• Start with -protocols w./negligible soundness 

Verifier Prover a  

c 

z 
Check (a,c,z) 

• Add commitment round: let V commit to his challenge c 
• Then open it after P sent his commitment a 
• P will also check that the commitment is properly opened 

• Soundness: by hiding of C, flow a still cannot depend on c 
• ZK: Simulator can “extract” c from V* and “rewind” 

input x witness w 

C=Com(c;r) 

, r 

C=Com(c;r) 
? 

Destroyed PoK aspect. Can 
“fix” using a few more 
rounds. 

• Get C from V* 

• Give “random” a* 
• Learn opening c 
• Fake random   

accepting (a, z) 
for this c 

• Rewind  V* ! 

• Use (a, z) with V* 
on the same C  

• “OK” as V* must 
still open C to c 

Formal analysis tricky: 
what if V* refuses the 
second time? 



Concurrency 
• What if several ZK proofs are going on simultaneously? 

• Current ZK definition not good enough if malicious 
verifiers coordinate their actions  
– similar problem for PoK with malicious provers 

• Technical problem: rewinding 
– Can schedule executions requiring exponentially many rewinds 

(each new rewind forces to redo all the previous ones) 

• Leads to concurrent ZK (concurrent PoK) 
– Much harder than (standalone) ZK/PoK 

– Need super-logarithmic number of rounds (can match, in theory) 

– Still uses “clever” rewinding, not good for on-line-deniability 

• Can we have straight-line simulation/extraction? 
– Gives on-line deniability (+concurrency, can simulate as you go)  

– Much harder, seemingly impossible  



Attempt 1: Make it Non-Interactive! 
• Fiat-Shamir: take -protocol and make c = Hash(a) 

– Extends to signature schemes (GQ, Schnorr) if c = Hash(a,m) ! 

• Why is this good? 

– Challenge c still chosen “after” a in “unpredictable” manner 

– No longer need V during proof (only to verify) ! 

– Means get general ZK, not just HVZK (no malicious V) ! 

– In fact, event concurrent ZK (no issue of scheduling) ! 

• Why is this bad? 
– Can only [GT03] analyze in the random oracle model  

– Alternatively, if view Hash as a “trusted setup” 

– Lose deniability, proof is now transferable ! 

• Can we replace random oracle with a “cheaper” setup? 
– Yes, Common Reference String (CRS) model 



Non-Interactive ZK with a CRS 
• [BFM88]: assume trusted party publishes a CRS 

– Both Prover and Verifier trust it was properly generated 

– Mild/realistic assumption…  

• Where is the “cheating”/”meat”? 
– When simulating, Sim can choose his own CRS’  ( CRS) 

– In particular, can plant a trapdoor not known to the real Prover, 
which allows it to cheat 

• Example: instead of proving x, prove x’ = “either x or 

CRS is pseudorandom” 

– Now, Sim has a witness to x’, without having a witness to x 

– However, Prover must still prove x (real CRS is actually random) 

• Deniability lost since Sim cannot work with “real” CRS 

• Also quite inefficient in practice…  (getting better) 



Regaining Efficiency with Interaction 

• [Dam01]: can we have fast interactive concurrent 
ZK in the CRS model? 
– Yes, add a tweak to any -protocol ! 

• Let CRS = (public) key PK to a trapdoor 
commitment scheme  
– Prover cannot can break binding in the real model 

– Simulator knows trapdoor TK that can open 
commitments arbitrarily 

• Example: Pedersen, Com(b; K) = gK hb mod p 

– If know m = Dlogg(h), can open gK to 0 (K) or 1 (K – m) 

• Aside: how to build other trapdoor commitments? 
– use -protocols again (Pedersen is special case!)  



Concurrent ZK in the CRS Model 

• Instead of sending a, send C = ComPK(a) 

• In last flow, open C to a together with sending z 
• In real world, still sound as before, since any 

Prover is bound to some a by C (in fact, PoK) 

• But Simulator can simulate V* straight-line: 

– Commit to garbage in first flow 

– Learn c from malicious verifier V* 

– Prepare fake (a, z) and open C to a (w. trapdoor TK) ! 

• More work for concurrent extraction 

• Still not deniable in real world… 



Further Reading 

 

 

• O. Goldreich. Foundations of Cryptography — 
Volume I (Basic Tools).  Cambridge University Press, 
2001. 

  

• O. Goldreich.  “Zero knowledge twenty years after 
their invention.”  Tutorial at FOCS `02. 
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