
1/29/2019 Explaining SNARKs Part I: Homomorphic Hidings - Zcash

https://z.cash/blog/snark-explain/ 1/2

Zcash Company blog / Explaining SNARKs Part I: Homomorphic Hidings

Explaining SNARKs Part I: Homomorphic Hidings
Ariel Gabizon | February 28, 2017 | Updated: October 1, 2018

Constructions of zk-SNARKs involve a careful combination of several ingredients; fully understanding how these

ingredients all work together can take a while.

If I had to choose one ingredient whose role is most prominent, it would be what I will call here Homomorphic Hiding

(HH) [1]. In this post we explain what an HH is, and then give an example of why it is useful and how it is constructed.

An HH of a number is a function satisfying the following properties:

For most ’s, given it is hard to find

Different inputs lead to different outputs – so if then

If someone knows and they can generate the HH of arithmetic expressions in and For example,

they can compute from and

Here’s a toy example of why HH is useful for Zero-Knowledge proofs: Suppose Alice wants to prove to Bob she knows

numbers such that (Of course, it’s not too exciting knowing such but this is a good example to

explain the concept with).

1. Alice sends and to Bob.

2. Bob computes from these values (which he is able to do since is an HH).

3. Bob also computes and now checks whether He accepts Alice’s proof only if equality

holds.

As different inputs are mapped by to different hidings, Bob indeed accepts the proof only if Alice sent hidings of

such that On the other hand, Bob does not learn and as he just has access to their hidings [2].

Now let’s see an example of how such hidings are constructed. We actually cannot construct them for regular integers

with regular addition, but need to look at finite groups:

Let be some integer. When we write for an integer we mean taking the remainder of after dividing by

 For example, and We can use the operation to define an addition operation

on the numbers We do regular addition but then apply on the result to get back a number in

the range We sometimes write on the right to clarify we are using this type of addition. For

example, We call the set of elements together with this addition operation the

group .

For a prime , we can use the operation to also define a multiplication operation over the numbers

 in a way that the multiplication result is also always in the set – by performing regular

multiplication of integers, and then taking the result [3] For example,

This set of elements together with this operation is referred to as the group . has the following useful properties:

1. It is a cyclic group; which means that there is some element in called a generator such that all elements of

 can be written as for some in , where we define

E(x) x

x E(x) x.

x ≠ y, E(x) ≠ E(y).

E(x) E(y), x y.

E(x + y) E(x) E(y).

x, y x + y = 7 x, y,

E(x) E(y)

E(x + y) E

E(7), E(x + y) = E(7).

E x, y

x + y = 7. x y,

n A mod n A, A

n. 9 mod 7 = 2 13 mod 12 = 1. mod n

{0, … , n − 1} : (mod n)

{0, … , n − 1}. (mod n)

2 + 3 = 1 (mod 4). {0, … , n − 1}

Zn

p mod p

{1, … , p − 1} {1, … , p − 1}

mod p. 2 ⋅ 4 = 1 (mod 7).

Z
∗
p Z

∗
p

g Z
∗
p

Z
∗
p ga a {0, . . , p − 2} g0 = 1.

https://z.cash/blog/
https://z.cash/blog/author/ariel-gabizon/

1/29/2019 Explaining SNARKs Part I: Homomorphic Hidings - Zcash

https://z.cash/blog/snark-explain/ 2/2

2. The discrete logarithm problem is believed to be hard in . This means that, when p is large, given an element

in it is difficult to find the integer in such that

3. As ”exponents add up when elements are multiplied”, we have for in

Using these properties, we now construct an HH that ”supports addition” – meaning that is computable

from and We assume the input of is from , so it is in the range We define

 for each such , and claim that is an HH: The first property implies that different ’s in are mapped

to different outputs. The second property implies that given it is hard to find . Finally, using the third

property, given and we can compute as

[1] Homomorphic hiding is not a term formally used in cryptography, and is introduced here for didactic purposes. It is similar to

but weaker than the well-known notion of a computationally hiding commitment. The difference is that an HH is a

deterministic function of the input, whereas a commitment uses additional randomness. As a consequence, HHs essentially

”hide most x’s” whereas commitments ”hide every x”.

[2] Bob does learn some information about x and y. For example, he can choose a random x’, and check whether x=x’ by

computing E(x’). For this reason the above protocol is not really a Zero-Knowledge protocol, and is only used here for

explanatory purposes. In fact, as we shall see in later posts, HH is ultimately used in snarks to conceal verifier challenges

rather than prover secrets.

[3] When p is not a prime it is problematic to define multiplication this way. One issue is that the multiplication result can be

zero even when both arguments are not zero. For example when p=4, we can get 2*2=0 (mod 4).

Part II >>

Z
∗
p h

Z
∗
p a 0, . . , p − 2 ga = h (mod p).

a, b 0, . . , p − 2 ga ⋅ gb = ga+b (mod p−1).

E(x + y)

E(x) E(y). x E Zp−1 {0, … , p − 2}.

E(x) = gx x E x Zp−1

E(x) = gx x

E(x) E(y) E(x + y) E(x + y) = gx+y mod p−1 = gx ⋅ gy = E(x) ⋅ E(y).

Technical

#cryptography, explainers, zksnarks

History of Hash Function Attacks New Release: 1.0.7

Zcash Community

Zcash Foundation

Zcash Community

Forums

Community chat

Zcash Company

Blog

About

Team

Careers

Twitter

Contact

Resources

Download Zcash

FAQ

Documentation

Media Kit

Copyright Policy

Trademark policy

Compliance

Newsletter Signup

Email*

Sign up

Privacy Policy | Sitemap | © 2018 ZEROCOIN ELECTRIC COIN COMPANY

https://z.cash/blog/snark-explain2
https://z.cash/blog/category/technical/
https://z.cash/blog/tag/cryptography/
https://z.cash/blog/tag/explainers/
https://z.cash/blog/tag/zksnarks/
https://z.cash/blog/hash-functions/
https://z.cash/blog/new-release-1-0-7/
https://z.cash.foundation/
https://www.zcashcommunity.com/
https://forum.zcashcommunity.com/
https://chat.zcashcommunity.com/
https://z.cash/blog/
https://z.cash/about/
https://z.cash/team/
https://z.cash/jobs/
https://twitter.com/zcashco
https://z.cash/contact/
https://z.cash/download/
https://z.cash/support/faq/
http://docs.z.cash/
https://z.cash/press/
https://z.cash/copyright-policy/
https://z.cash/trademark-policy/
https://z.cash/compliance/
https://twitter.com/zcashco
https://z.cash/privacy-policy
https://z.cash/sitemap

1/29/2019 Explaining SNARKs Part II: Blind Evaluation of Polynomials - Zcash

https://z.cash/blog/snark-explain2 1/2

Zcash Company blog / Explaining SNARKs Part II: Blind Evaluation of Polynomials

Explaining SNARKs Part II: Blind Evaluation of

Polynomials
Ariel Gabizon | March 13, 2017 | Updated: October 1, 2018

<< Part I

In this post, we recall the notion of a polynomial, and explain the notion of “blind evaluation” of a polynomial, and how it

is implemented using Homomorphic Hiding (HH). (See Part I for an explanation of HH.) In future posts, we will see that

blind evaluation is a central tool in SNARK constructions.

We denote by the field of size ; that is, the elements of are and addition and multiplication are

done as explained in Part I.

Polynomials and linear combinations

Recall that a polynomial of degree over is an expression of the form

, for some

We can evaluate at a point by substituting for , and computing the resultant sum

For someone that knows the value is a linear combination of the values – where linear

combination just means “weighted sum”, in the case of the “weights” are

In the last post, we saw the HH defined by where was a generator of a group with a hard discrete log

problem. We mentioned that this HH “supports addition” in the sense that can be computed from and

. We note here that it also “supports linear combinations”; meaning that, given we can compute

. This is simply because

Blind evaluation of a polynomial

Suppose Alice has a polynomial of degree , and Bob has a point that he chose randomly. Bob wishes to

learn , i.e., the HH of the evaluation of at Two simple ways to do this are:

Alice sends to Bob, and he computes by himself.

Bob sends to Alice; she computes and sends it to Bob.

However, in the blind evaluation problem we want Bob to learn without learning – which precludes the first

option; and, most importantly, we don’t want Alice to learn , which rules out the second [1].

Fp p Fp {0, … , p − 1}

mod p

P d Fp

P(X) = a0 + a1 ⋅ X + a2 ⋅ X2 + … + ad ⋅ Xd

a0, … , ad ∈ Fp.

P s ∈ Fp s X

P(s) = a0 + a1 ⋅ s + a2 ⋅ s2 + … + ad ⋅ sd

P , P(s) 1, s, … , sd

P(s) a0, … , ad.

E E(x) = gx g

E(x + y) E(x)

E(y) a, b,E(x),E(y),

E(ax + by)

E(ax + by) = gax+by = gax ⋅ gby = (gx)a ⋅ (gy)b = E(x)a ⋅ E(y)b.

P d s ∈ Fp

E(P(s)) P s.

P E(P(s))

s E(P(s))

E(P(s)) P

s

https://z.cash/blog/
https://z.cash/blog/author/ariel-gabizon/
https://z.cash/blog/snark-explain/
https://z.cash/blog/snark-explain/

1/29/2019 Explaining SNARKs Part II: Blind Evaluation of Polynomials - Zcash

https://z.cash/blog/snark-explain2 2/2

Using HH, we can perform blind evaluation as follows.

1. Bob sends to Alice the hidings

2. Alice computes from the elements sent in the first step, and sends to Bob. (Alice can do this

since supports linear combinations, and is a linear combination of

Note that, as only hidings were sent, neither Alice learned [2], nor Bob learned .

Why is this useful?

Subsequent posts will go into more detail as to how blind evaluation is used in SNARKs. The rough intuition is that the

verifier has a “correct” polynomial in mind, and wishes to check the prover knows it. Making the prover blindly evaluate

their polynomial at a random point not known to them, ensures the prover will give the wrong answer with high

probability if their polynomial is not the correct one. This, in turn, relies on the Schwartz-Zippel Lemma stating that

“different polynomials are different at most points”.

[1] The main reason we don’t want to send to Bob, is simply that it is large – (d+1) elements, where, for example, d~2000000

in the current Zcash protocol; this ultimately has to do with the “Succinct” part of SNARKs. It is true that the sequence of

hidings Bob is sending to Alice above is just as long, but it will turn out this sequence can be “hard-coded” in the parameters

of the system, whereas Alice’s message will be different for each SNARK proof.

[2] Actually, the hiding property only guarantees not being recoverable from , but here we want to claim it is also not

recoverable from the sequence that potentially contains more information about . This follows from the

d-power Diffie-Hellman assumption, which is needed in several SNARK security proofs.

Part III >>

E(1),E(s), … ,E(sd).

E(P(s)) E(P(s))

E P(s) 1, s, … , sd.)

s P

P

s E(s)

E(s), … ,E(sd) s

Technical

#cryptography, explainers, zksnarks

BLS12-381: New zk-SNARK Elliptic Curve

Construction

Announcing the Zcash Foundation

Zcash Community

Zcash Foundation

Zcash Community

Forums

Community chat

Zcash Company

Blog

About

Team

Careers

Twitter

Contact

Resources

Download Zcash

FAQ

Documentation

Media Kit

Copyright Policy

Trademark policy

Compliance

Newsletter Signup

Email*

Sign up

Privacy Policy | Sitemap | © 2018 ZEROCOIN ELECTRIC COIN COMPANY

https://z.cash/blog/snark-explain3/
https://z.cash/blog/category/technical/
https://z.cash/blog/tag/cryptography/
https://z.cash/blog/tag/explainers/
https://z.cash/blog/tag/zksnarks/
https://z.cash/blog/new-snark-curve/
https://z.cash/blog/announcing-the-zcash-foundation/
https://z.cash.foundation/
https://www.zcashcommunity.com/
https://forum.zcashcommunity.com/
https://chat.zcashcommunity.com/
https://z.cash/blog/
https://z.cash/about/
https://z.cash/team/
https://z.cash/jobs/
https://twitter.com/zcashco
https://z.cash/contact/
https://z.cash/download/
https://z.cash/support/faq/
http://docs.z.cash/
https://z.cash/press/
https://z.cash/copyright-policy/
https://z.cash/trademark-policy/
https://z.cash/compliance/
https://twitter.com/zcashco
https://z.cash/privacy-policy
https://z.cash/sitemap

1/29/2019 Explaining SNARKs Part III: The Knowledge of Coefficient Test and Assumption - Zcash

https://z.cash/blog/snark-explain3/ 1/3

Zcash Company blog / Explaining SNARKs Part III: The Knowledge of Coefficient Test and Assumption

Explaining SNARKs Part III: The Knowledge of

Coefficient Test and Assumption
Ariel Gabizon | March 28, 2017 | Updated: October 1, 2018

<< Part II

In Part II, we saw how Alice can blindly evaluate the hiding of her polynomial of degree , at a point

belonging to Bob. We called this “blind” evaluation, because Alice did not learn in the process.

However, there was something missing in that protocol – the fact that Alice is able to compute does not

guarantee she will indeed send to Bob, rather than some completely unrelated value.

Thus, we need a way to “force” Alice to follow the protocol correctly. We will explain in part IV precisely how we achieve

this. In this post, we focus on explaining the basic tool needed for that – which we call here the Knowledge of

Coefficient (KC) Test.

As before, we denote by a generator of a group of order where the discrete log is hard. It will be

convenient from this post onwards to write our group additively rather than multiplicatively. That is, for ,

denotes the result of summing copies of .

The KC Test

For [1], let us call a pair of elements in an -pair if and

The KC Test proceeds as follows.

1. Bob chooses random and He computes

2. He sends to Alice the “challenge” pair Note that is an -pair.

3. Alice must now respond with a different pair that is also an -pair.

4. Bob accepts Alice’s response only if is indeed an -pair. (As he knows he can check if

Now, let’s think how Alice could successfully respond to the challenge. Let’s assume for a second that she knew In

that case, she could simply choose any in and compute and return as her new -pair.

However, as the only information about she has is and has a hard discrete log problem, we expect that Alice

cannot find

So how can she successfully respond to the challenge without knowing

Here’s the natural way to do it: Alice simply chooses some and responds with

In this case, we have:

so indeed is an -pair as required.

E(P(s)) P d s

s

E(P(s))

E(P(s))

g G |G| = p

α ∈ Fp α ⋅ g

α g

α ∈ F
∗
p (a, b) G α a, b ≠ 0 b = α ⋅ a.

α ∈ F
∗
p a ∈ G. b = α ⋅ a.

(a, b). (a, b) α

(a′, b′) α

(a′, b′) α α b′ = α ⋅ a′.)

α.

a′ G, b′ = α ⋅ a′; (a′, b′) α

α α ⋅ a G

α.

α?

γ ∈ F
∗
p, (a′, b′) = (γ ⋅ a, γ ⋅ b).

b′ = γ ⋅ b = γα ⋅ a = α(γ ⋅ a) = α ⋅ a′,

(a′, b′) α

https://z.cash/blog/
https://z.cash/blog/author/ariel-gabizon/
https://z.cash/blog/snark-explain2/

1/29/2019 Explaining SNARKs Part III: The Knowledge of Coefficient Test and Assumption - Zcash

https://z.cash/blog/snark-explain3/ 2/3

Note that if Alice responds using this strategy, she knows the ratio between and . That is, she knows the coefficient

 such that

The Knowledge of Coefficient Assumption [2] (KCA) states that this is always the case, namely:

KCA: If Alice returns a valid response to Bob’s challenge with non-negligible probability over Bob’s

choices of , then she knows such that

The KC Test and Assumption will be important tools in Part IV.

What does “Alice knows” mean exactly

You may wonder how we can phrase the KCA in precise mathematical terms; specifically, how do we formalize the

notion that “Alice knows ” in a mathematical definition?

This is done roughly as follows: We say that, in addition to Alice, we have another party which we call Alice’s Extractor.

Alice’s Extractor has access to Alice’s inner state.

We then formulate the KCA as saying that: whenever Alice successfully responds with an -pair Alice’s

Extractor outputs such that [3]

[1] denotes the non-zero elements of . It is the same as described in Part I.

[2] This is typically called the Knowledge of Exponent Assumption in the literature, as traditionally it was used for groups written

multiplicatively.

[3] The fully formal definition needs to give the Extractor “a little slack” and states instead that the probability that Alice

responds successfully but the Extractor does not output such is negligible.

Part IV >>

a a′

γ a′ = γ ⋅ a.

(a′, b′) (a, b)

a,α γ a′ = γ ⋅ a.

γ

α (a′, b′),

γ a′ = γ ⋅ a.

F
∗
p Fp Z

∗
p

γ

Technical

#cryptography, explainers, zksnarks

New Release: 1.0.8 BIP199 for Hashed Timelocked Contracts

Zcash Community

Zcash Foundation

Zcash Community

Forums

Community chat

Zcash Company

Blog

About

Team

Careers

Twitter

Contact

Resources

Download Zcash

FAQ

Documentation

Media Kit

Copyright Policy

Trademark policy

Compliance

Newsletter Signup

Email*

Sign up

Privacy Policy | Sitemap | © 2018 ZEROCOIN ELECTRIC COIN COMPANY

https://z.cash/blog/snark-explain4.html
https://z.cash/blog/category/technical/
https://z.cash/blog/tag/cryptography/
https://z.cash/blog/tag/explainers/
https://z.cash/blog/tag/zksnarks/
https://z.cash/blog/new-release-1-0-8/
https://z.cash/blog/htlc-bip/
https://z.cash.foundation/
https://www.zcashcommunity.com/
https://forum.zcashcommunity.com/
https://chat.zcashcommunity.com/
https://z.cash/blog/
https://z.cash/about/
https://z.cash/team/
https://z.cash/jobs/
https://twitter.com/zcashco
https://z.cash/contact/
https://z.cash/download/
https://z.cash/support/faq/
http://docs.z.cash/
https://z.cash/press/
https://z.cash/copyright-policy/
https://z.cash/trademark-policy/
https://z.cash/compliance/
https://twitter.com/zcashco
https://z.cash/privacy-policy
https://z.cash/sitemap

1/29/2019 Explaining SNARKs Part III: The Knowledge of Coefficient Test and Assumption - Zcash

https://z.cash/blog/snark-explain3/ 3/3

1/29/2019 Explaining SNARKs Part IV: How to make Blind Evaluation of Polynomials Verifiable - Zcash

https://z.cash/blog/snark-explain4 1/3

Zcash Company blog / Explaining SNARKs Part IV: How to make Blind Evaluation of Polynomials Verifiable

Explaining SNARKs Part IV: How to make Blind

Evaluation of Polynomials Verifiable
Ariel Gabizon | April 11, 2017 | Updated: October 1, 2018

<< Part III

In this part, we build on Part II and III to develop a protocol for verifiable blind evaluation of polynomials, which we will

define shortly. In Part V we’ll start to see how such a protocol can be used for constructing SNARKs, so bear with me a

little bit longer for the connection to SNARKs :).

Suppose, as in Part II, that Alice has a polynomial of degree and Bob has a point that he chose randomly.

We want to construct a protocol that allows Bob to learn , i.e. the hiding of evaluated at , with two

additional properties:

1. Blindness: Alice will not learn (and Bob will not learn).

2. Verifiability: The probability that Alice sends a value not of the form for of degree that is known to

her, but Bob still accepts – is negligible.

This is what we call verifiable blind evaluation of a polynomial. The protocol in Part II gave us the first item but not the

second. To get verifiability we need an extended version of the Knowledge of Coefficient Assumption (KCA) that was

presented in Part III.

The verifiability and blindness properties are useful together because they make Alice decide what polynomial she

will use without seeing . [1] This, in a sense, commits Alice to an “answer polynomial” without seeing the “challenge

point” . This intuition will become more clear in the next parts of the series.

An Extended KCA

The KCA as we defined it in Part III essentially said something like this: If Bob gives Alice some -pair

and then Alice generates another -pair , then she knows such that . In other words, Alice knows the

relation between and .

Now, suppose that instead of one, Bob sends Alice several -pairs (for the same); and that

again, after receiving these pairs, Alice is challenged to generate some other -pair . Recall that the main point

is that Alice must do so although she does not know .

As we saw in Part III, a natural way for Alice to generate such an -pair, would be to take one of the pairs she

received from Bob, and multiply both elements by some ; if was an -pair, then will be one

too. But can Alice generate -pairs in more ways now that she’s received multiple -pairs? Perhaps using several of

the received -pairs simultaneously to get a new one?

The answer is yes: For example, Alice can choose two values and compute the pair

. An easy computation shows that, as long as is non-zero, this is also

an -pair:

P d s ∈ Fp

E(P(s)) P s

s P

E(P(s)) P d

P

s

s

α (a, b = α ⋅ a)

α (a′, b′) c a′ = c ⋅ a

a′ a

α (a1, b1), … , (ad, bd) α

α (a′, b′)

α

α (ai, bi)

c ∈ F
∗
p (ai, bi) α (c ⋅ ai, c ⋅ bi)

α α

α

c1, c2 ∈ Fp

(a′, b′) = (c1 ⋅ a1 + c2 ⋅ a2, c1 ⋅ b1 + c2 ⋅ b2) a′

α

https://z.cash/blog/
https://z.cash/blog/author/ariel-gabizon/
https://z.cash/blog/snark-explain3/
https://z.cash/blog/snark-explain2/

1/29/2019 Explaining SNARKs Part IV: How to make Blind Evaluation of Polynomials Verifiable - Zcash

https://z.cash/blog/snark-explain4 2/3

More generally, Alice can take any linear combination of the given pairs – that is choose any and

define .

Note that, if Alice uses this strategy to generate her -pair she will know some linear relation between and

; that is, she knows such that .

The extended KCA states, essentially, that this is the only way Alice can generate an -pair; that is, whenever she

succeeds, she will know such a linear relation between and . More formally, suppose that is a group of

size with generator written additively as in Part III. The d-power Knowledge of Coefficient Assumption (d-KCA) [2] in

 is as follows:

d-KCA: Suppose Bob chooses random and , and sends to Alice the -pairs

. Suppose that Alice then outputs another -pair . Then, except

with negligible probability, Alice knows such that .

Note that in the d-KCA Bob does not send an arbitrary set of -pairs, but one with a certain “polynomial structure”. This

will be useful in the protocol below.

The Verifiable Blind Evaluation Protocol

Assume that our HH is the mapping for a generator of as above.

For simplicity, we present the protocol for this particular :

1. Bob chooses a random , and sends to Alice the hidings (of) and also the

hidings (of).

2. Alice computes and using the elements sent in the first step, and sends both to Bob.

3. Bob checks that , and accepts if and only if this equality holds.

First, note that given the coefficients of , is a linear combination of ; and is a

linear combination of . Thus, similarly to the protocol of Part II, Alice can indeed compute

these values from Bob’s messages for a polynomial that she knows.

Second, by the d-KCA if Alice sends , such that then almost surely she knows such that

. In that case, for the polynomial known to Alice. In other

words, the probability that Bob accepts in Step 3 while at the same time Alice does not know such a is negligible.

To summarize, using the d-KCA we’ve developed a protocol for verifiable blind evaluation of polynomials. In the next

posts, we will see how this building block comes to play in SNARK constructions.

[1] In the fully formal proof, things are somewhat more subtle, as Alice does see some information about before deciding on

her – for example, the hidings of .

[2] The d-KCA was introduced in a paper of Jens Groth.

Part V >>

b′ = c1 ⋅ b1 + c2 ⋅ b2 = c1α ⋅ a1 + c2α ⋅ a2 = α(c1 ⋅ a1 + c2 ⋅ a2) = α ⋅ a′.

d c1, … , cd ∈ Fp

(a′, b′) = (∑
d
i=1 ciai,∑

d
i=1 cibi)

α a′

a1, … , ad c1, … , cd a′ = ∑
d
i=1 ci ⋅ ai

α

a′ a1, … , ad G

p g

G

α ∈ F
∗
p s ∈ Fp α

(g,α ⋅ g), (s ⋅ g,αs ⋅ g), … , (sd ⋅ g,αsd ⋅ g) α (a′, b′)

c0, … , cd ∈ Fp ∑
d

i=0 cis
i ⋅ g = a′

α

E(x) = x ⋅ g g G

E

α ∈ F
∗
p g, s ⋅ g, … , sd ⋅ g 1, s, … , sd

α ⋅ g,αs ⋅ g, … ,αsd ⋅ g α,αs, … ,αsd

a = P(s) ⋅ g b = αP(s) ⋅ g

b = α ⋅ a

P P(s) ⋅ g g, s ⋅ g, … , sd ⋅ g αP(s) ⋅ g

α ⋅ g,αs ⋅ g, … ,αsd ⋅ g

P

a b b = α ⋅ a c0, … , cd ∈ Fp

a = ∑
d
i=0 cis

i ⋅ g a = P(s) ⋅ g P(X) = ∑
d
i=0 ci ⋅ X i

P

s

P s, … , sd

Technical

#cryptography, explainers, zksnarks

https://z.cash/blog/snark-explain/
http://www0.cs.ucl.ac.uk/staff/J.Groth/ShortNIZK.pdf
https://z.cash/blog/snark-explain5/
https://z.cash/blog/category/technical/
https://z.cash/blog/tag/cryptography/
https://z.cash/blog/tag/explainers/
https://z.cash/blog/tag/zksnarks/

1/29/2019 Explaining SNARKs Part IV: How to make Blind Evaluation of Polynomials Verifiable - Zcash

https://z.cash/blog/snark-explain4 3/3

Bellman: zk-SNARKs in Rust Security Announcement 2017-04-12

Zcash Community

Zcash Foundation

Zcash Community

Forums

Community chat

Zcash Company

Blog

About

Team

Careers

Twitter

Contact

Resources

Download Zcash

FAQ

Documentation

Media Kit

Copyright Policy

Trademark policy

Compliance

Newsletter Signup

Email*

Sign up

Privacy Policy | Sitemap | © 2018 ZEROCOIN ELECTRIC COIN COMPANY

https://z.cash/blog/bellman-zksnarks-in-rust/
https://z.cash/blog/security-announcement-2017-04-12/
https://z.cash.foundation/
https://www.zcashcommunity.com/
https://forum.zcashcommunity.com/
https://chat.zcashcommunity.com/
https://z.cash/blog/
https://z.cash/about/
https://z.cash/team/
https://z.cash/jobs/
https://twitter.com/zcashco
https://z.cash/contact/
https://z.cash/download/
https://z.cash/support/faq/
http://docs.z.cash/
https://z.cash/press/
https://z.cash/copyright-policy/
https://z.cash/trademark-policy/
https://z.cash/compliance/
https://twitter.com/zcashco
https://z.cash/privacy-policy
https://z.cash/sitemap

1/29/2019 Explaining SNARKs Part V: From Computations to Polynomials - Zcash

https://z.cash/blog/snark-explain5/ 1/3

Zcash Company blog / Explaining SNARKs Part V: From Computations to Polynomials

Explaining SNARKs Part V: From Computations to

Polynomials
Ariel Gabizon | April 25, 2017 | Updated: October 1, 2018

<< Part IV

In the three previous parts, we developed a certain machinery for dealing with polynomials. In this part, we show how

to translate statements we would like to prove and verify to the language of polynomials. The idea of using

polynomials in this way goes back to the groundbreaking work of Lund, Fortnow, Karloff and Nisan.

In 2013, another breakthrough work of Gennaro, Gentry, Parno and Raykova defined an extremely useful translation of

computations into polynomials called a Quadratic Arithmetic Program (QAP). QAPs have become the basis for modern

zk-SNARK constructions, in particular those used by Zcash.

In this post we explain the translation into QAPs by example. Even when focusing on a small example rather than the

general definition, it is unavoidable that it is a lot to digest at first, so be prepared for a certain mental effort :).

Suppose Alice wants to prove to Bob she knows such that . The first step is to

present the expression computed from as an arithmetic circuit.

Arithmetic circuits

An arithmetic circuit consists of gates computing arithmetic operations like addition and multiplication, with wires

connecting the gates. In our case, the circuit looks like this:

The bottom wires are the input wires, and the top wire is the output wire giving the result of the circuit computation on

the inputs. As can be seen in the picture, we label the wires and gates of the circuit in a very particular way, that is

needed for the next step of translating the circuit into a QAP:

When the same outgoing wire goes into more than one gate, we still think of it as one wire – like in the

example.

We assume multiplication gates have exactly two input wires, which we call the left wire and right wire.

We don’t label the wires going from an addition to multiplication gate, nor the addition gate; we think of the inputs

of the addition gate as going directly into the multiplication gate. So in the example we think of and as both

c1, c2, c3 ∈ Fp (c1 ⋅ c2) ⋅ (c1 + c3) = 7

c1, c2, c3

w1

w1 w3

https://z.cash/blog/
https://z.cash/blog/author/ariel-gabizon/
https://z.cash/blog/snark-explain4
https://pdfs.semanticscholar.org/4c3a/78661fd920b4116afd0ad88247bbd00160ce.pdf
https://eprint.iacr.org/2012/215.pdf

1/29/2019 Explaining SNARKs Part V: From Computations to Polynomials - Zcash

https://z.cash/blog/snark-explain5/ 2/3

being right inputs of .

A legal assignment for the circuit, is an assignment of values to the labeled wires where the output value of each

multiplication gate is indeed the product of the corresponding inputs. So for our circuit, a legal assignment is of the

form: where and . In this terminology, what Alice wants to prove is that

she knows a legal assignment such that . The next step is to translate this statement into one

about polynomials using QAPs.

Reduction to a QAP

We associate each multiplication gate with a field element: will be associated with and with . We

call the points our target points. Now we need to define a set of “left wire polynomials” , “right wire

polynomials” and “output wire polynomials” .

The idea for the definition is that the polynomials will usually be zero on the target points, except the ones involved in

the target point’s corresponding multiplication gate.

Concretely, as are, respectively, the left, right and output wire of ; we define , as

the polynomial is one on the point corresponding to and zero on the point corresponding to .

Note that and are both right inputs of . Therefore, we define similarly – as

 is one on the target point corresponding to and zero on the other target point.

We set the rest of the polynomials to be the zero polynomial.

Given fixed values we use them as coefficients to define a left, right, and output “sum” polynomials. That

is, we define

,

and then we define the polynomia .

Now, after all these definitions, the central point is this: is a legal assignment to the circuit if and only if

vanishes on all the target points.

Let’s examine this using our example. Suppose we defined as above given some . Let’s evaluate

all these polynomials at the target point :

Out of all the ’s only is non-zero on . So we have . Similarly, we get and

.

Therefore, . A similar calculation shows .

In other words, vanishes on the target points if and only if is a legal assignment.

Now, we use the following algebraic fact: For a polynomial and a point , we have if and only if the

polynomial divides , i.e. for some polynomial .

Defining the target polynomial , we thus have that divides if and only if

is a legal assignment.

Following the above discussion, we define a QAP as follows:

A Quadratic Arithmetic Program of degree and size consists of polynomials , ,

 and a target polynomial of degree .

An assignment satisfies if, defining and

, we have that divides .

g2

(c1, … , c5) c4 = c1 ⋅ c2 c5 = c4 ⋅ (c1 + c3)

(c1, … , c5) c5 = 7

g1 1 ∈ Fp g2 2 ∈ Fp

{1, 2} L1, … ,L5

R1, … ,R5 O1, … ,O5

w1, w2, w4 g1 L1 = R2 = O4 = 2 − X

2 − X 1 g1 2 g2

w1 w3 g2 L4 = R1 = R3 = O5 = X − 1

X − 1 2 g2

(c1, … , c5)

L := ∑
5
i=1 ci ⋅ Li,R := ∑

5
i=1 ci ⋅ Ri,O := ∑

5
i=1 ci ⋅ Oi

P := L ⋅ R − O

(c1, … , c5) P

L,R,O,P c1, … , c5

1

Li L1 1 L(1) = c1 ⋅ L1(1) = c1 R(1) = c2

O(1) = c4

P(1) = c1 ⋅ c2 − c4 P(2) = c4 ⋅ (c1 + c3)– c5

P (c1, … , c5)

P a ∈ Fp P(a) = 0

X − a P P = (X − a) ⋅ H H

T (X) := (X − 1) ⋅ (X − 2) T P (c1, … , c5)

Q d m L1, … ,Lm R1, … ,Rm

O1, … ,Om T d

(c1, … , cm) Q L := ∑m

i=1 ci ⋅ Li,R := ∑m

i=1 ci ⋅ Ri,O := ∑m

i=1 ci ⋅ Oi

P := L ⋅ R − O T P

1/29/2019 Explaining SNARKs Part V: From Computations to Polynomials - Zcash

https://z.cash/blog/snark-explain5/ 3/3

In this terminology, Alice wants to prove she knows an assignment satisfying the QAP described above

with .

To summarize, we have seen how a statement such as “I know such that ” can be

translated into an equivalent statement about polynomials using QAPs. In the next part, we will see an efficient

protocol for proving knowledge of a satisfying assignment to a QAP.

>> Part VI

[1] In this post we tried to give the most concise example of a reduction to QAP; we also recommend Vitalik Buterin’s excellent

post for more details on the transformation from a program to a QAP.

(c1, … , c5)

c5 = 7

c1, c2, c3 (c1 ⋅ c2) ⋅ (c1 + c3) = 7

Technical

#cryptography, explainers, zksnarks

Payment Contexts & Reusing Shielded Addresses Internet Money

Zcash Community

Zcash Foundation

Zcash Community

Forums

Community chat

Zcash Company

Blog

About

Team

Careers

Twitter

Contact

Resources

Download Zcash

FAQ

Documentation

Media Kit

Copyright Policy

Trademark policy

Compliance

Newsletter Signup

Email*

Sign up

Privacy Policy | Sitemap | © 2018 ZEROCOIN ELECTRIC COIN COMPANY

https://z.cash/blog/snark-explain6
https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649
https://z.cash/blog/category/technical/
https://z.cash/blog/tag/cryptography/
https://z.cash/blog/tag/explainers/
https://z.cash/blog/tag/zksnarks/
https://z.cash/blog/shielded-address-contexts/
https://z.cash/blog/internet-money/
https://z.cash.foundation/
https://www.zcashcommunity.com/
https://forum.zcashcommunity.com/
https://chat.zcashcommunity.com/
https://z.cash/blog/
https://z.cash/about/
https://z.cash/team/
https://z.cash/jobs/
https://twitter.com/zcashco
https://z.cash/contact/
https://z.cash/download/
https://z.cash/support/faq/
http://docs.z.cash/
https://z.cash/press/
https://z.cash/copyright-policy/
https://z.cash/trademark-policy/
https://z.cash/compliance/
https://twitter.com/zcashco
https://z.cash/privacy-policy
https://z.cash/sitemap

1/29/2019 Explaining SNARKs Part VI: The Pinocchio Protocol - Zcash

https://z.cash/blog/snark-explain6 1/4

Zcash Company blog / Explaining SNARKs Part VI: The Pinocchio Protocol

Explaining SNARKs Part VI: The Pinocchio Protocol
Ariel Gabizon | May 10, 2017

<< Part V

In part V we saw how a statement Alice would like to prove to Bob can be converted into an equivalent form in the

“language of polynomials” called a Quadratic Arithmetic Program (QAP).

In this part, we show how Alice can send a very short proof to Bob showing she has a satisfying assignment to a QAP.

We will use the Pinocchio Protocol of Parno, Howell, Gentry and Raykova. But first let us recall the definition of a QAP

we gave last time:

A Quadratic Arithmetic Program of degree and size consists of polynomials , ,

 and a target polynomial of degree .

An assignment satisfies if, defining

 and , we have that divides .

As we saw in Part V, Alice will typically want to prove she has a satisfying assignment possessing some additional

constraints, e.g. ; but we ignore this here for simplicity, and show how to just prove knowledge of some

satisfying assignment.

If Alice has a satisfying assignment it means that, defining as above, there exists a polynomial such that

. In particular, for any we have .

Suppose now that Alice doesn’t have a satisfying assignment, but she still constructs as above from some

unsatisfying assignment . Then we are guaranteed that does not divide . This means that for any

polynomial of degree at most , and will be different polynomials. Note that and here are both of

degree at most .

Now we can use the famous Schwartz-Zippel Lemma that tells us that two different polynomials of degree at most

can agree on at most points . Thus, if is much larger than the probability that for

a randomly chosen is very small.

This suggests the following protocol sketch to test whether Alice has a satisfying assignment.

1. Alice chooses polynomials of degree at most .

2. Bob chooses a random point , and computes .

3. Alice sends Bob the hidings of all these polynomials evaluated at , i.e. .

4. Bob checks if the desired equation holds at . That is, he checks whether

.

Again, the point is that if Alice does not have a satisfying assignment, she will end up using polynomials where the

equation does not hold identically, and thus does not hold at most choices of . Therefore, Bob will reject with high

probability over his choice of in such a case.

Q d m L1, … ,Lm R1, … ,Rm

O1, … ,Om T d

(c1, … , cm) Q

L := ∑
m

i=1 ci ⋅ Li,R := ∑
m

i=1 ci ⋅ Ri,O := ∑
m

i=1 ci ⋅ Oi P := L ⋅ R − O T P

cm = 7

L,R,O,P H

P = H ⋅ T s ∈ Fp P(s) = H(s) ⋅ T (s)

L,R,O,P

(c1, … , cm) T P

H d P H ⋅ T P H ⋅ T

2d

2d

2d s ∈ Fp p 2d P(s) = H(s) ⋅ T (s)

s ∈ Fp

L,R,O,H d

s ∈ Fp E(T (s))

s E(L(s)),E(R(s)),E(O(s)),E(H(s))

s

E(L(s) ⋅ R(s) − O(s)) = E(T (s) ⋅ H(s))

s

s

https://z.cash/blog/
https://z.cash/blog/author/ariel-gabizon/
https://z.cash/blog/snark-explain5/
https://eprint.iacr.org/2013/279.pdf
https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma
https://z.cash/blog/snark-explain1/

1/29/2019 Explaining SNARKs Part VI: The Pinocchio Protocol - Zcash

https://z.cash/blog/snark-explain6 2/4

The question is whether we have the tools to implement this sketch. The most crucial point is that Alice must choose

the polynomials she will use, without knowing . But this is exactly the problem we solved in the verifiable blind

evaluation protocol, that was developed in Parts II-IV.

Given that we have that, there are four main points that need to be addressed to turn this sketch into a zk-SNARK. We

deal with two of them here, and the other two in the next part.

Making sure Alice chooses her polynomials according to an

assignment

Here is an important point: If Alice doesn’t have a satisfying assignment, it doesn’t mean she can’t find any

polynomials of degree at most with , it just means she can’t find such polynomials

where and were “produced from an assignment”; namely, that

 for the same .

The protocol of Part IV just guarantees she is using some polynomials of the right degree, but not that they

were produced from an assignment. This is a point where the formal proof gets a little subtle; here we sketch the

solution imprecisely.

Let’s combine the polynomials into one polynomial as follows:

The point of multiplying by and by is that the coefficients of “do not mix” in : The

coefficients of in are precisely the coefficients of , the next coefficients of

are precisely the coefficients of , and the last coefficients are those of .

Let’s combine the polynomials in the QAP definition in a similar way, defining for each a polynomial

whose first coefficients are the coefficients of , followed be the coefficients of and then . That is, for

each we define the polynomial

Note that when we sum two of the ’s the , , and “sum separately”. For example,

.

More generally, suppose that we had for some . Then we’ll also have

 for the same coefficients . In other words, if

is a linear combination of the ’s it means that were indeed produced from an assignment.

Therefore, Bob will ask Alice to prove to him that is a linear combination of the ’s. This is done in a similar way to

the protocol for verifiable evaluation:

Bob chooses a random , and sends to Alice the hidings . He then asks Alice to

send him the element . If she succeeds, an extended version of the Knowledge of Coefficient Assumption

implies she knows how to write as a linear combination of the ’s.

Adding the zero-knowledge part – concealing the assignment

In a zk-SNARK Alice wants to conceal all information about her assignment. However the hidings

 do provide some information about the assignment.

For example, given some other satisfying assignment Bob could compute the corresponding

 and hidings . If these come out different from Alice’s

hidings, he could deduce that is not Alice’s assignment.

s

L,R,O,H d L ⋅ R − O = T ⋅ H

L,R O

L := ∑
m

i=1 ci ⋅ Li,R := ∑
m

i=1 ci ⋅ Ri,O := ∑
m

i=1 ci ⋅ Oi (c1, … , cm)

L,R,O

L,R,O F

F = L + Xd+1 ⋅ R + X2(d+1) ⋅ O

R Xd+1 O X2(d+1) L,R,O F

1,X, … ,Xd F L d + 1 Xd+1, … ,X2d+1

R d + 1 O

i ∈ {1, … ,m} Fi

d + 1 Li Ri Oi

i ∈ {1, … ,m}

Fi = Li + Xd+1 ⋅ Ri + X2(d+1) ⋅ Oi

Fi Li Ri Oi

F1 + F2 = (L1 + L2) + Xd+1 ⋅ (R1 + R2) + X2(d+1) ⋅ (O1 + O2)

F = ∑
m
i=1 ci ⋅ Fi (c1, … , cm)

L = ∑
m

i=1 ci ⋅ Li,R = ∑
m

i=1 ci ⋅ Ri,O = ∑
m

i=1 ci ⋅ Oi (c1, … , cm) F

Fi L,R,O

F Fi

β ∈ F
∗
p E(β ⋅ F1(s)), … ,E(β ⋅ Fm(s))

E(β ⋅ F(s))

F Fi

E(L(s)),E(R(s)),E(O(s)),E(H(s))

(c′
1, … , c′

m)

L′,R′,O′,H ′ E(L′(s)),E(R′(s)),E(O′(s)),E(H ′(s))

(c′
1, … , c′

m)

https://z.cash/blog/snark-explain4/
https://z.cash/blog/snark-explain3/

1/29/2019 Explaining SNARKs Part VI: The Pinocchio Protocol - Zcash

https://z.cash/blog/snark-explain6 3/4

To avoid such information leakage about her assignment, Alice will conceal her assignment by adding a “random -

shift” to each polynomial. That is, she chooses random , and defines

.

Assume were produced from a satisfying assignment; hence, for some polynomial . As

we’ve just added a multiple of everywhere, also divides . Let’s do the calculation to see this:

Thus, defining , we have that . Therefore, if Alice

uses the polynomials instead of , Bob will always accept.

On the other hand, these polynomials evaluated at with (which is all but ’s), reveal no information

about the assignment. For example, as is non-zero and is random, is a random value, and therefore

 reveals no information about as it is masked by this random value.

What’s left for next time?

We presented a sketch of the Pinocchio Protocol in which Alice can convince Bob she possesses a satisfying

assignment for a QAP, without revealing information about that assignment. There are two main issues that still need

to be resolved in order to obtain a zk-SNARK:

In the sketch, Bob needs an HH that “supports multiplication”. For example, he needs to compute

from and . However, we have not seen so far an example of an HH that enables this. We have

only seen an HH that supports addition and linear combinations.

Throughout this series, we have discussed interactive protocols between Alice and Bob. Our final goal, though, is

to enable Alice to send single-message non-interactive proofs, that are publicly verifiable – meaning that anybody

seeing this single message proof will be convinced of its validity, not just Bob (who had prior communication with

Alice).

Both these issues can be resolved by the use of pairings of elliptic curves, which we will discuss in the next and final

part.

>> Part VII

T

δ1, δ2, δ3 ∈ F
∗
p

Lz := L + δ1 ⋅ T ,Rz := R + δ2 ⋅ T ,Oz := O + δ3 ⋅ T

L,R,O L ⋅ R − O = T ⋅ H H

T T Lz ⋅ Rz − Oz

Lz ⋅ Rz − Oz = (L + δ1 ⋅ T)(R + δ2 ⋅ T)–O − δ3 ⋅ T

= (L ⋅ R − O) + L ⋅ δ2 ⋅ T + δ1 ⋅ T ⋅ R + δ1δ2 ⋅ T 2– δ3 ⋅ T

= T ⋅ (H + L ⋅ δ2 + δ1 ⋅ R + δ1δ2 ⋅ T– δ3)

Hz = H + L ⋅ δ2 + δ1 ⋅ R + δ1δ2 ⋅ T − δ3 Lz ⋅ Rz − Oz = T ⋅ Hz

Lz,Rz,Oz,Hz L,R,O,H

s ∈ Fp T (s) ≠ 0 d s

T (s) δ1 δ1 ⋅ T (s)

Lz(s) = L(s) + δ1 ⋅ T (s) L(s)

E(H(s) ⋅ T (s))

E(H(s)) E(T (s))

Technical

#cryptography, explainers, zksnarks

Release Cycle and Lifetimes Getting Started Developing with Zcash

Zcash Community

Zcash Foundation

Zcash Community

Forums

Community chat

Zcash Company

Blog

About

Team

Careers

Resources

Download Zcash

FAQ

Documentation

Media Kit

Newsletter Signup

Email*

Sign up

https://z.cash/blog/snark-explain7.html
https://z.cash/blog/category/technical/
https://z.cash/blog/tag/cryptography/
https://z.cash/blog/tag/explainers/
https://z.cash/blog/tag/zksnarks/
https://z.cash/blog/release-cycle-and-lifetimes/
https://z.cash/blog/getting-started-developing/
https://z.cash.foundation/
https://www.zcashcommunity.com/
https://forum.zcashcommunity.com/
https://chat.zcashcommunity.com/
https://z.cash/blog/
https://z.cash/about/
https://z.cash/team/
https://z.cash/jobs/
https://z.cash/download/
https://z.cash/support/faq/
http://docs.z.cash/
https://z.cash/press/
https://twitter.com/zcashco

1/29/2019 Explaining SNARKs Part VI: The Pinocchio Protocol - Zcash

https://z.cash/blog/snark-explain6 4/4

Twitter

Contact

Copyright Policy

Trademark policy

Compliance

Privacy Policy | Sitemap | © 2018 ZEROCOIN ELECTRIC COIN COMPANY

https://twitter.com/zcashco
https://z.cash/contact/
https://z.cash/copyright-policy/
https://z.cash/trademark-policy/
https://z.cash/compliance/
https://z.cash/privacy-policy
https://z.cash/sitemap

1/29/2019 Explaining SNARKs Part VII: Pairings of Elliptic Curves - Zcash

https://z.cash/blog/snark-explain7 1/4

Zcash Company blog / Explaining SNARKs Part VII: Pairings of Elliptic Curves

Explaining SNARKs Part VII: Pairings of Elliptic

Curves
Ariel Gabizon | June 7, 2017 | Updated: October 1, 2018

<< Part VI

In Part VI, we saw an outline of the Pinocchio zk-SNARK. We were missing two things – an HH that supports both

addition and multiplication that is needed for the verifier’s checks, and a transition from an interactive protocol to a

non-interactive proof system.

In this post we will see that using elliptic curves we can obtain a limited, but sufficient for our purposes, form of HH

that supports multiplication. We will then show that this limited HH also suffices to convert our protocol to the desired

non-interactive system.

We begin by introducing elliptic curves and explaining how they give us the necessary HH.

Elliptic curves and their pairings

Assume is a prime larger than , and take some such that . We look at the equation

An elliptic curve is the of set of points [1] that satisfy such an equation. These curves give us an interesting

way to construct groups. The group elements will be the points that are on the curve, i.e., that satisfy the

equation, together with a special point , that for technical reasons is sometimes refered to as the “point at infinity”,

and serves as the identity element, i.e. the zero of the group.

Now the question is how we add two points to get a third? The addition rule is derived

from a somewhat abstract object called the divisor class group of the curve. For our purposes, all you have to know

about this divisor class group is that it imposes the following constraint on the definition of addition: The sum of

points on any line must be zero, i.e., .

Let’s see how the addition rule is derived from this constraint. Look at a vertical line, defined by an equation of the form

. Suppose this line intersects the curve at a point . Because the curve equation is of the form

, if is on the curve, so is the point . Moreover, since it’s a vertical line and the

curve equation is of degree two in , we can be sure these are the only points where the line and curve intersect.

p 3 u, v ∈ Fp 4u3 + 27v2 ≠ 0

Y 2 = X3 + u ⋅ X + v

C (x, y)

(x, y) ∈ F
2
p

O

P = (x1, y1),Q = (x2, y2)

O

X = c P = (x1, y1)

Y 2 = f(X) (x1, y1) Q := (x1, −y1)

Y

https://z.cash/blog/
https://z.cash/blog/author/ariel-gabizon/
https://z.cash/blog/snark-explain6/

1/29/2019 Explaining SNARKs Part VII: Pairings of Elliptic Curves - Zcash

https://z.cash/blog/snark-explain7 2/4

Thus, we must have which means ; that is, is the inverse of in the group.

Now let us look at points and that have a different first coordinate – that is, , and see how to add them.

We pass a line through and .

Since the curve is defined by a degree three polynomial in and already intersects this (non-vertical) line at two

points, it is guaranteed to intersect the line at a third point, that we denote , and no other points.

So we must have , which means ; and we know by now that is obtained from

by flipping the second coordinate from to .

Thus, we have derived the addition rule for our group: Given points and , pass a line through them, and then take

the “mirror” point of the third intersection point of the line as the addition result. [2]

This group is usually called – as it consists of points on the curve with coordinates in ; but let’s denote it by

 from now on. Assume for simplicity that the number of elements in is a prime number , and is different from .

This is many times the case, for example in the curve that Zcash is currently using. In this case, any element

different from generates .

The smallest integer such that divides is called the embedding degree of the curve. It is conjectured that

when is not too small, say, at least , then the discrete logarithm problem in , i.e. finding from and , is very

hard. (In BN curves [3] currently used by Zcash .)

The multiplicative group of contains a subgroup of order that we denote . We can look at curve points with

coordinates in and not just in . Under the same addition rule, these points also form a group together with

called . Note that clearly contains . Besides , will contain an additional subgroup of

order (in fact, additional subgroups of order).

Fix generators . It turns out that there is an efficient map, called the Tate reduced pairing, taking a pair

of elements from and into an element of ,

such that

1. for a generator of , and

P + Q = O P = −Q Q P

P Q x1 ≠ x2

P Q

X

R = (x, y)

P + Q + R = O P + Q = −R −R R

y −y

P Q

C(Fp) C Fp

G1 G1 r p

g ∈ G1

O G1

k r pk − 1

k 6 G1 α g α ⋅ g

k = 12

Fpk r GT

Fpk Fp O

C(Fpk) C(Fpk) G1 G1 C(Fpk) G2

r r − 1 r

g ∈ G1,h ∈ G2

G1 G2 GT

Tate(g,h) = g g GT

1/29/2019 Explaining SNARKs Part VII: Pairings of Elliptic Curves - Zcash

https://z.cash/blog/snark-explain7 3/4

2. given a pair of elements , we have .

Defining is a bit beyond the scope of this series, and relies on concepts from algebraic geometry, most

prominently that of divisors. Here’s a sketch of ’s definition: [4]

For the polynomial has a zero of multiplicity at the point , and no other zeroes. For a point

, divisors enable us to prove there exists a function from the curve to that also has, in some precise

sense, a zero of multiplicity at and no other zeroes. is then defined as .

It may not seem at all clear what this definition has to do with the stated properties, and indeed the proof that

has these properties is quite complex.

Defining , we get a weak version of an HH that supports both addition

and multiplication: are HHs that support addition, and given the hidings , we can compute

. In other words, if we have the ”right” hidings of and we can get a (different) hiding of . But for example, if

we had hidings of we couldn’t get a hiding of .

We move on to discussing non-interactive proof systems. We begin by explaining exactly what we mean by ‘non-

interactive’.

Non-interactive proofs in the common reference string model

The strongest and most intuitive notion of a non-interactive proof is probably the following. In order to prove a certain

claim, a prover broadcasts a single message to all parties, with no prior communication of any kind; and anyone

reading this message would be convinced of the prover’s claim. This can be shown to be impossible in most cases. [5]

A slightly relaxed notion of non-interactive proof is to allow a common reference string (CRS). In the CRS model, before

any proofs are constructed, there is a setup phase where a string is constructed according to a certain randomized

process and broadcast to all parties. This string is called the CRS and is then used to help construct and verify proofs.

The assumption is that the randomness used in the creation of the CRS is not known to any party – as knowledge of

this randomness might enable constructing proofs of false claims.

We will explain how in the CRS model we can convert the verifiable blind evaluation protocol of Part IV into a non-

interactive proof system. As the protocol of Part VI consisted of a few such subprotocols it can be turned into a non-

interactive proof system in a similar way.

A non-interactive evaluation protocol

The non-interactive version of the evaluation protocol basically consists of publishing Bob’s first message as the CRS.

Recall that the purpose of the protocol is to obtain the hiding of Alice’s polynomial at a randomly chosen

.

Setup: Random are chosen and the CRS:

is published.

Proof: Alice computes and using the elements of the CRS, and the fact that and

 support linear combinations.

Verification: Fix the such that and . Bob computes

and , and checks that they are equal. (If they are equal it implies .)

As explained in Part IV, Alice can only construct that will pass the verification check if is the hiding of for a

polynomial of degree known to her. The main difference here is that Bob does not need to know for the

verification check, as he can use the pairing function to compute only from and . Thus, he does

a, b ∈ Fr Tate(a ⋅ g, b ⋅ h) = g
ab

Tate

Tate

a ∈ Fp (X − a)r r a

P ∈ G1 fP Fp

r P Tate(P ,Q) fP (Q)(pk−1)/r

Tate

E1(x) := x ⋅ g,E2(x) := x ⋅ h,E(x) := x ⋅ g

E1,E2,E E1(x) E2(y)

E(xy) x y xy

x, y, z xyz

E(P(s)) P

s ∈ Fr

α ∈ F
∗
r , s ∈ Fr

(E1(1),E1(s), … ,E1(sd), E2(α),E2(αs), … ,E2(αsd))

a = E1(P(s)) b = E2(αP(S)) E1

E2

x, y ∈ Fr a = E1(x) b = E2(y) E(αx) = Tate(E1(x),E2(α))

E(y) = Tate(E1(1),E2(y)) αx = y

a, b a P(s)

P d α

E(αx) E1(x) E2(α)

https://z.cash/blog/snark-explain4/
https://z.cash/blog/snark-explain2/

1/29/2019 Explaining SNARKs Part VII: Pairings of Elliptic Curves - Zcash

https://z.cash/blog/snark-explain7 4/4

not need to construct and send the first message himself, and this message can simply be fixed in the CRS.

[1] You may ask ‘The set of points from where?’. We mean the set of points with coordinates in the algebraic closure of . Also,

the curve has an affine and projective version. When we are referring to the projective version we also include the “point at

infinity” as an element of the curve.

[2] We did not address the case of adding to itself. This is done by using the line that is tangent to the curve at , and taking

 to be the second intersection point of this line with the curve.

[3] https://eprint.iacr.org/2005/133.pdf

[4] The pairing Zcash actually uses is the optimal Ate pairing, which is based on the Tate reduced pairing, and can be computed

more efficiently than .

[5] In computational complexity theory terms, one can show that only languages in BPP have non-interactive zero-knowledge

proofs in this strong sense. The type of claims we need to prove in Zcash transactions, e.g. ‘I know a hash preimage of this

string’, correspond to the complexity class NP which is believed to be much larger than BPP.

[6] The images used were taken from the following article and are used under the creative commons license.

Fp

O

P P

R

Tate

Technical

#cryptography, explainers, zksnarks

New Release: 1.0.9 Pay-to-sudoku Revisited

Zcash Community

Zcash Foundation

Zcash Community

Forums

Community chat

Zcash Company

Blog

About

Team

Careers

Twitter

Contact

Resources

Download Zcash

FAQ

Documentation

Media Kit

Copyright Policy

Trademark policy

Compliance

Newsletter Signup

Email*

Sign up

Privacy Policy | Sitemap | © 2018 ZEROCOIN ELECTRIC COIN COMPANY

https://eprint.iacr.org/2005/133.pdf
https://www.esat.kuleuven.be/cosic/publications/talk-96.pdf
https://en.wikipedia.org/wiki/BPP_(complexity)
https://en.wikipedia.org/wiki/NP_(complexity)
https://en.wikipedia.org/wiki/Elliptic_curve
https://creativecommons.org/licenses/by-sa/3.0/
https://z.cash/blog/category/technical/
https://z.cash/blog/tag/cryptography/
https://z.cash/blog/tag/explainers/
https://z.cash/blog/tag/zksnarks/
https://z.cash/blog/new-release-1-0-9/
https://z.cash/blog/pay-to-sudoku-revisited/
https://z.cash.foundation/
https://www.zcashcommunity.com/
https://forum.zcashcommunity.com/
https://chat.zcashcommunity.com/
https://z.cash/blog/
https://z.cash/about/
https://z.cash/team/
https://z.cash/jobs/
https://twitter.com/zcashco
https://z.cash/contact/
https://z.cash/download/
https://z.cash/support/faq/
http://docs.z.cash/
https://z.cash/press/
https://z.cash/copyright-policy/
https://z.cash/trademark-policy/
https://z.cash/compliance/
https://twitter.com/zcashco
https://z.cash/privacy-policy
https://z.cash/sitemap

