

07.03.2024

Introduction to Input-Output analysis

Thomas Guibentif Julien Michellod Martin Patel

MUSE - Track Energy Methods for analysing energy efficiency and renewable energy technologies

Contents of the class

- Theory
 - Basics of macro-economics
 - Input / Output tables (IOT)
 - Input-output analysis (IOA) Multipliers & impacts
- Examples
 - Total Output calculation
 - Energy consumption change
- Learning outcomes the exercise
 - Looks into environmental impacts from a macro-economic perspective
 - Trains your ability with spreadsheet calculations
 - Emulates a scientific approach

Theory

Definitions

- Final demand goods and services consumed by households; government, non-governmental institutions, and social security systems; companies with regard to gross capital formation; and goods and services used for export.
- Intermediate demand goods and services (apart from capital goods) used for production of other goods and services (including imports).
- **Total demand** Final demand + Intermediate demand

More definitions

- **Producer** price = **Basic** price + Net commodity **taxes**
- **Consumer** price = **Producer** price + **Trade** and **transport** margin

Contribution of products to GDP

GDP	Net commodity taxes Gross value added Intermediate consumption of domestically produced goods	=	 Taxes on products Subsidies on products Wages and salaries + Social contributions + Other taxes on production - Other subsidies on production + Operating surplus + Mixed incomes + Consumption of fixed capital
	produced goods and services Intermediate consumption of imports		+ Consumption of fixed capit (depreciation charges)

Balance principle

For the entire economy:

Gross Output

= Total supply of goods and services

- = Total demand for goods and services
- = Units · Basic Price
- = Intermediate demand + Final demand

= Intermediate demand + Value added

Input-Output Analysis (IOA)

IOA is used to estimate an overall economic activity triggered by a change in final demand (itself triggered by a policy measure, a communication campaign, a consumer choice...):

• System boundaries: Only change in final demand of domestic goods and services has impact on local economy!

Image credits: http://laborrightsblog.typepad.com/.a/6a00d8341bf90b53ef0105361df60e970c-pi https://marriottschool.byu.edu/upload/news/images/975-954-istock_000019501469medium.jpg

Different tiers of impact

- **Direct impacts** impacts that take place in economic sectors that supply goods and services for final demand.
- **Indirect impacts** upstream multiplier effects on economic sectors that supply goods and services for intermediate demand.
- **Induced impacts** multiplier effects of change in final demand as a result of income change.

Source: Yushchenko A, Patel M.K., 2016, Contributing to a green energy economy? A macroeconomic analysis of an energy efficiency program operated by a Swiss utility, Applied Energy. Images: http://www.mediashower.com/img/1204/man%20with%20tool%20belt.jpg http://www.mediashower.com/img/1204/man%20with%20tool%20belt.jpg http://www.mediashower.com/img/1204/man%20with%20tool%20belt.jpg http://www.mediashower.com/img/1204/man%20with%20tool%20belt.jpg

UNIVERSITÉ

DE GENÈVE

Gross and net impacts

- **Gross impacts** overall impacts caused by a measure (without any comparison/correction)
- Net impacts impacts caused by a measure relative to an alternative measure or a reference case

"net = gross - reference"

Applications

Simplified economy

General representation of an IOT

Columns j: Supply to (=input of) receiving sector j

	All values in MCHF	Basic metal industry	Electro technical industry	Machinery industry
Rows i:	Basic metal industry	d ₁₁	d ₁₂	d ₁₃
from	Electrotechnical industry	G ₂₁	d ₂₂	d ₂₃
supplying	Machinery industry	d ₃₁	d ₃₂	d ₃₃

• d_{ii} – intermediate deliveries from sector i to sector j

- f_i final demand from (or deliveries of) sector i to end users
- w_i value added by sector j (= total output intermediate input)
- x_k total output (sum horizontally) from sector k = total input (sum vertically) to sector k $x_i = \sum_{i=1}^n d_{ij} + f_i = \sum_{k=1}^n d_{ki} + w_i$

A more elaborated input-output table

UNIVERSITÉ

IOT of a simplified economy, million CHF

All values in MCHF	Basic metal industry	Electro technical industry	Machinery industry	House- holds (F. demand)		Total output
Basic metal industry	784	217	135	2		1138
Electrotechnical industry	32	737	234	1066		2069
Machinery industry	300	89	160	4271		4820
Added value	22	1026	4291	0	11	5339
Total input	1138	2069	4820	5339) 🥠	13366

Int. dem. + Final demand = Int. dem. + Value added Total input = Total output

Remember: balance principle

For the entire economy:

Gross Output

= Total supply of goods and services

- = Total demand for goods and services
- = Units · Basic Price
- = Intermediate demand + Final demand
- = Intermediate demand + Value added

Notes

- A delivery from sector i to sector j is at the same time :
 - An output from i delivered to j AND
 - An input to j supplied from i.

When we speak about totals:

- Total output from (a single) sector i is an *homogeneous* mix of products delivered to different sectors (sum over j, incl. f_i)
- Total input to sector j is an *heterogeneous* mix of products supplied from different sectors (sum over i, incl. w_i)
- Total output generated in the economy is the sum of total outputs from every sector = sum of total inputs to every sector

All values in MCHF	Basic metal industry	Electro technical industry	Machinery industry	House- holds	Total output
Basic metal industry	784	217	135	2	1138
Electrotechnical industry	32	737	234	1066	2069
Machinery industry	300	89	160	4271	4820
Added value	22	1026	4291	0	5339
Total input	1138	2069	4820	5339	13366

Technology matrix A

• Intermediate demand per unit of output = Technology matrix

Matrix of intermediate deliveries

First order deliveries

- Purchases producer j has to make to deliver one unit of product i
- Example: "1 Franc light bulb"

Source: K. Blok and E. Nieuwlaar, Introduction to Energy Analysis, Routledge editors, 2020

Second, third, ... order deliveries

- Second order deliveries $A * A * \Delta F$
- Third order deliveries $A * A * A * \Delta F$
- How to calculate all deliveries needed?

NB: The symbol "*" is used to denote simple matrix multiplication: $(A*B)_{ij}=a_{ij}\times b_{ji}$. Standard notation uses no symbol. Beware that this operation is not commutative: $A*B \neq B*A$.

Source: K. Blok and E. Nieuwlaar, Introduction to Energy Analysis, Routledge editors, 2020

Total output (or deliveries)

$$\Delta X = [I + A + A^2 + A^3 \dots] * \Delta F$$

where
$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Result from algebra
 $P = [I + A + A^2 + A^3 \dots] = (I - A)^{-1}$

Leontief inverse matrix! Shows direct + indirect output

$$P = \begin{bmatrix} 3.37 & 0.56 & 0.13 \\ 0.22 & 1.59 & 0.09 \\ 0.93 & 0.22 & 1.07 \end{bmatrix}$$

How much output is generated from sector i as a result of demand for one unit of product of the sector j (here: how much machinery is built to produce 1 MCHF in light bulbs)

Results

• Total output (or deliveries) for all final demand

$$X = P * F = \begin{bmatrix} 3.37 & 0.56 & 0.13 \\ 0.22 & 1.59 & 0.09 \\ 0.93 & 0.22 & 1.07 \end{bmatrix} * \begin{pmatrix} 2 \\ 1066 \\ 4271 \end{pmatrix} = \begin{bmatrix} 1138 \\ 2069 \\ 4820 \end{bmatrix}$$

	Basic metal industry	Electro technical industry	Machinery industry	Households	Total
Basic metal industry	784	217	135	2	1138
Electrotechnical industry	32	737	234	1066	2069
Machinery industry	300	89	160	4271	4820
Added value	22	1026	4291	0	5339
Total	1138	2069	4820	5339	13366

Results

• Total output (or deliveries) for all final demand

$$X = P * F = \begin{bmatrix} 3.37 & 0.56 & 0.13 \\ 0.22 & 1.59 & 0.09 \\ 0.93 & 0.22 & 1.07 \end{bmatrix} * \begin{pmatrix} 2 \\ 1066 \\ 4271 \end{pmatrix} = \begin{bmatrix} 1138 \\ 2069 \\ 4820 \end{bmatrix}$$

Total output multipliers = Sum of columns of *P*
How much output is
generated in the
economy if 1 MCHF
of goods are
purchased from
sector j (here basic
metal industry)
$$9 \quad 2531 \quad 5487 \qquad = 8027$$

Most of the output in this economy
is due to demand for Machinery.

Other types of analysis

- IOT can be combined with other statistical data (on GDP, employment, energy consumption, emissions...)
- Allows to estimate overall environmental and socioeconomic impacts
- Sectoral classification should be identical (not always achieved in practice)

			DE GE	NÈVI
	Table	1. STATEM		
T2.8a	Emplo	ois en équivalents	plein temps	
	par di	visions économiq	ues	
	Total			
	Valeur	s trimestrielles, en r	nilliers	
		Branche	s économiques	Av
Section	ns et divi	sions		2011
		IOT code		
B-S	5-96	2011	Total	3 419.3
	F F 40			070.0
B-F	5-43			972.2
В	5-9	05-09	Industries extractives	4.2
Ċ	10-33		Industrie manufacturière	628.7
	10-12	10-12	Industries alimentaires et du tabac	59.8
	13-15	13-15	Industries du textile et de l'habillement	14.7
	16-18	Divided into 16, 17, 18	Industries du bois et du papier ; imprimerie	68.3
	19-20	19-20	Cokéfaction, raffinage et industrie chimique	28.6
	21	21	Industrie pharmaceutique	36.6
	22-23	Divided into 22, 23	Industries du caoutchouc et du plastique	39.5
	24-25	Divided into 24, 25	Fabrication de produits métalliques	95.3
	26	26	Fabrication de produits electroniques; horlog	102.4
	21		Fabrication d equipements electriques	30.1
	20 20	Z0 Divided into 20, 30	Fabrication de matériele de transport	02.0
	29-00	Divided into 31 32 33	Autres industries manufacturières: rén et inst	14.9 50.5
П	35	35	Production et distribution d'énergie	24 7
Ē	36-39	36-39	Production et distribution d'energie	13.7
F	41-43	41-43	Construction	300.9
-	41-42		Construction de bâtiments et génie civil	103.2
	43		Travaux de construction spécialisés	197.8

UNIVERS

TE

Example: energy-extended I/O analysis

• Combine IOT [million CHF] and energy consumption data [TJ]

	Total Output [MCHF]	Energy consumption [TJ]	Energy intensity [TJ/MCHF]
Basic metal industry	1138	25	0.0220
Electrotechnical industry	2069	4	0.0019
Machinery industry	4820	6	0.0012
Added value	5339	-	-
Total	13366	35	-

Energy consumed to produce 1MCHF of total output from j

Option 1: Energy Intensity

How much energy is consumed by sector i to produce 1MCHF of goods.

NB: "o" is simply an element by element product

Option 2: Energy multiplier matrix

 $\Delta X = P * \Delta F \Rightarrow \Delta E = (E \circ P) * \Delta F$ $E \circ P$ 1) Computation: -E $0.022 \times [3.37]$ 0.56 0.13] 0.0741 0.0123 0.0028 0.002×0.22 1.59 0.09 = 0.0004 0.0031 0.0002 0.001×0.93 0.22 1.07 0.0012 0.0003 0.0013 Output from sector i Energy consumed as a result of demand by sector i for 1MCHF of output from sector j $E \circ P$ ΔE AF2) Illustration: 0.0741 0.0123 0.00281 0.0002 | * | 1066 | = 0.0004 0.0031 0.0003 4271 0.0013 10.0012Energy multiplier matrix: Energy consumed Total energy consumed by the by sector i (Mach. Ind.) as a result of Mach. Ind. given a vector of demand from sector j (El. Ind.) final demand change

Option 3: Energy multipliers

= Total energy consumption generated by final demand from one sector:

Option 3 bis: Energy multipliers

Energy multipliers can be directly computed from the energy intensity vector as:

$$E^{T} \qquad P$$
1) $E * P = \begin{bmatrix} 0.022 & 0.002 & 0.001 \end{bmatrix} * \begin{bmatrix} 3.37 & 0.56 & 0.13 \\ 0.22 & 1.59 & 0.09 \\ 0.93 & 0.22 & 1.07 \end{bmatrix}$

$$= \begin{bmatrix} 0.0756 & 0.0156 & 0.0043 \end{bmatrix}$$

$$\downarrow \times 2 \qquad \downarrow \times 1066 \qquad \downarrow \times 4271 \qquad \text{Sum}$$
2) $0.2 \qquad 16.6 \qquad 18.4 \qquad \longrightarrow = 35 \text{ TJ}$

Energy-extended I/O analysis – summary

- **Option 1:** Energy intensity: Multiply by *output* of a sector to obtain the energy consumption *of that sector*
- **Option 2:** Energy multiplier matrix: multiply by *final demand from* a sector to obtain energy consumption *of each other sector* to supply that demand.
- **Option 3:** Energy multiplier vector: Multiply by *final demand from* a sector to obtain energy consumption *across the economy* due to that demand.
- Energy multipliers represent change in energy consumption of all sectors caused by a change in final consumption from a sector j
- Change in energy consumption = Multiplier * Change in final demand

Gross and net impacts – Example

Wrap-up

- Input-output tables represent the relationships between economic sectors regarding production, import, and consumption of goods and services.
- IO analysis is used to evaluate impacts across the economy (direct, indirect, and induced) and compare alternatives (gross vs. net impacts).
- IO analysis is more comprehensive, but less detailed compared to other types of analysis (i.e., process analysis).
- IO analysis can be combined with other types of analyses. In practice, combination of input-output tables with other statistical data may be difficult (for example, due to differences in sectoral classification).

Thank you for your attention

Questions?