Methods for analysing energy efficiency and renewable energy technologies

Méthodes d'analyse de l'efficacité énergétique et des technologies des énergies renouvelables

Dr Jonathan Chambers Prof. Martin Patel

Objective

Understand and apply several important methods for analysing technical and economic as well as environmental aspects of <u>energy systems</u>

Background material

Builds on:

- B.Sc. Studies, Tronc Commun
- Fundamental of Energy Systems (E. Trutnevyte)

Literature:

- David J. C. MacKay: Sustainable Energy Without the Hot Air
- Kornelis Blok: Introduction to Energy Analysis, 3rd Ed. 2020/2021
- Specific recommendations by method

Software

- Microsoft Excel
 - Indispensible!
 - We assume you are familiar with it already
- OpenLCA
 - No prior knowledge needed
 - Life Cycle Assessment Exercise
- Python scripting (+Jupyter Notebooks)
 - No prior knowledge needed
 - Used in serveral exercises:
 - Uncertainty and Monte Carlo Method
 - Renewable energy balance techno-economic analysis
 - Energy System Optimisation

Course Content

- 1. Energy efficiency program evaluation and MCA
- 2. Input-Output Analysis
- 3. Energy statistics
- 4. Life cycle assessment
- 5. Technological learning
- 6. Uncertainty and Monte Carlo method
- 7. Techno-economic analysis
- 8. Pinch analysis
- 9. Energy system optimisation

After completion of this course:

- Understand the various methods covered and the underlying theory
- Obtain hands-on practical experience by applying the methods separately and in combination

Material

- Syllabus
- Assignments
- Additional material uploaded on Moodle

Organisation

- Thursday morning (8:15 10:00): Lecture
- *Friday (08:15-17:00)*: **Practical assignment** (in pairs)
 - <u>General feedback</u> from previous assignment is given at 08:15.
 - <u>Solution sheets will be uploaded in Moodle.</u>
 - You are expected to individually prepare the weekly assignment before starting the practical computer-based assignment in pairs.
 - Communicate any change of couples to the teachers.
 - During the practical assignment, supervisors will be present to help you. Try to prepare specific questions.
 - If your presence is not possible on Friday for urgent reasons, please communicate this to the week supervisor.

Organisation

Deadline for assignments: Wednesday evening 17:00

• Each student submits the assignment into Moodle with the following name:

Methods_weekX_NameSurname1_NameSurname2

- Usually submit a single pdf
- For some assignments, you may need to submit Excel files
- If you cannot submit on time, please discuss with the coordinators in advance (not the day of the submission).
- <u>If we are not notified</u> in advance, we will **deduct 0.5 points** from your mark for every day beyond the deadline.

Evaluation and Grading

 75% of the final grade: Weighted average of the submitted assignments.

25% of the final grade:
Oral exam.

Evaluation and grading criteria: Weekly assignments (75%)

- Answers should be numerically correct and demonstrate:
 - Good general insight
 - Insight into possibilities and limitations of a technology option or research method
 - Insight into which parameters and assumptions determine the outcome
 - Analysis and conclusions that are based on a critical analysis of the methods, data, and results.
- Also pay attention to:
 - Constructing a clear, logical and consistent argumentation
 - How you deal with uncertainties
 - How you handle and present data (tables and charts)
 - How you account for the feedback provided in previous assignments

Evaluation and grading criteria: Weekly assignments (75%)

- Each weekly assignment will be graded

- Together with your graded assignment you will receive an answer sheet, allowing you to check your calculations.
- Final mark for the assignments
 - Weighted average of marks of weekly assignments.

Evaluation and grading criteria: Oral exam (25%)

- 3-5 questions randomly distributed across the various assignments.
- The questions are related to your understanding of key concepts introduced during the course
 - Not mathematical or programming skills
- The student may be requested to write a formula and interpret it using a whiteboard.
- Date of oral exam to be fixed closer to the time

Schedule 2024

Date	Торіс	Lecture	Exercise
1 THU 22.02.2024 (08:15- 10:00) & Friday 23.02.2024 (full day)	Energy efficiency policy evaluation and MCA	M. Patel	I. Fouiteh, F. Sasso
2 THU 29.02.2024 (08:15- 10:00) & Friday 01.03.2024 (full day)	Technological Learning	M. Patel	I. Fouiteh, F. Sasso
3 THU 07.03.2024 (08:15- 10:00) & Friday 08.03.2024 (full day)	Input-Output analysis	T. Guibentif	T. Guibentif, J. Michellod
4 THU 14.03.2024 (08:15- 10:00) & Friday 15.03.2024 (full day)	Pinch analysis	M. Babaei	M. Babaei, M. Kolahi, A. Mahmoudan
5 THU 21.03.2024 (08:15- 10:00) & Friday 22.03.2024 (full day)	Life Cycle Assessment (LCA)	M. Patel	J. Michellod, P. Boiko

Schedule 2024: Holidays

Date				
THU 28.03.2024 FRI 29.03.2023	No course (Easter)			
Easter holidays 30.03.2020-07.04.2020				

Schedule 2024

Date	Торіс	Lecture	Exercise
6 THU 11.04.2024 (08:15- 10:00) & Friday 12.04.2024 (full day)	Energy statistics	J. Chambers	I. Fouiteh, A. Mahmoudan
7 THU 18.04.2024 (08:15- 10:00) & Friday 19.04.2024 (full day	Uncertainty and Montecarlo method	J. Chambers	M. Babaei, M. Kolahi
8 THU 25.04.2024 (08:15- 10:00) & Friday 26.04.2024 (full day)	Techno-economic analysis	J. Chambers	J. Michellod A. Syla, A. Nyandwi
9 THU 02.05.2024 (08:15- 10:00) & Friday 03.05.2024 (full day)	Energy System Optimisation	J. Chambers	A. Syla, M. Kolahi

Summary

- Credits
 - 6 ECTS
- Evaluation
 - Via assignments and oral exam
- Group size
 - Couples
- In case of questions

Jonathan.Chambers@unige.ch Martin.Patel@unige.ch

