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ABSTRACT 
Across all sciences, the quality of measurements is important. Survey measurements are 
only appropriate for use when researchers have validity evidence within their particular 
context. Yet, this step is frequently skipped or is not reported in educational research. This 
article briefly reviews the aspects of validity that researchers should consider when using 
surveys. It then focuses on factor analysis, a statistical method that can be used to collect 
an important type of validity evidence. Factor analysis helps researchers explore or con-
firm the relationships between survey items and identify the total number of dimensions 
represented on the survey. The essential steps to conduct and interpret a factor analysis 
are described. This use of factor analysis is illustrated throughout by a validation of Diek-
man and colleagues’ goal endorsement instrument for use with first-year undergraduate 
science, technology, engineering, and mathematics students. We provide example data, 
annotated code, and output for analyses in R, an open-source programming language and 
software environment for statistical computing. For education researchers using surveys, 
understanding the theoretical and statistical underpinnings of survey validity is fundamen-
tal for implementing rigorous education research.

THE USE OF SURVEYS IN BIOLOGY EDUCATION RESEARCH
Surveys and achievement tests are common tools used in biology education research 
to measure students’ attitudes, feelings, and knowledge. In the early days of biology 
education research, researchers designed their own surveys (also referred to as 
“measurement instruments”1) to obtain information about students. Generally, each 
question on these instruments asked about something different and did not involve 
extensive use of measures of validity to ensure that researchers were, in fact, mea-
suring what they intended to measure (Armbruster et al., 2009; Rissing and Cogan, 
2009; Eddy and Hogan, 2014). In recent years, researchers have begun adopting 
existing measurement instruments. This shift may be due to researchers’ increased 
recognition of the amount of work that is necessary to create and validate survey 
instruments (cf. Andrews et al., 2017; Wachsmuth et al., 2017; Wiggins et al., 2017). 
While this shift is a methodological advancement, as a community of researchers we 
still have room to grow. As biology education researchers who use surveys, we need 
to understand both the theoretical and statistical underpinnings of validity to appro-
priately employ instruments within our contexts. As a community, biology education 
researchers need to move beyond simply adopting a “validated” instrument to estab-
lishing the validity of the scores produced by the instrument for a researcher’s 
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1In this article, we will use the terms “surveys,” “measurement instrument,” and “instrument” interchangeably. 
We will, however, put the most emphasis on the term “measurement instrument,” because it conveys the 
importance of considering the quality of the measurement resulting from the instrument’s use.

RESEARCH METHODS
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intended interpretation and use. This will allow education 
researchers to produce more rigorous and replicable science. 
In this primer, we walk the reader through important validity 
aspects to consider and report when using surveys in their 
specific context.

Measuring Variables That Are Not Directly Observable
Some variables measured in education studies are directly 
observable. For example, the percent of international students 
in a class or the amount of time students spend on a specific 
task can both be directly observed by the researcher. Other vari-
ables that researchers may want to measure are not directly 
observable, such as students’ attitudes, feelings, and knowl-
edge. The measurement of unobservable variables is what we 
focus on in this primer. To study these unobservable variables, 
researchers collect several related observable variables 
(responses to survey items) and use them to make inferences 
about the unobservable variable, termed “latent variable” or 
“construct”2 in the measurement literature. For example, when 
assessing students’ knowledge of evolution, it is intuitive that a 
single item (i.e., a test question) would not be sufficient to 
make judgments about the entirety of students’ evolution 
knowledge. Instead, students’ scores from several items mea-
suring different aspects of evolution are combined into a sum 
score. The measurement of attitudes and feelings (e.g., stu-
dents’ goals, students’ interest in biology) is no different. For 
example, say a researcher wanted to understand the degree to 
which students embrace goals focused on improving them-
selves, agentic goals, as will be seen in our illustrating example 
in this primer. Instead of asking students one question about 
how important it is for them to improve themselves, an instru-
ment was created to include a number of items that focus on 
slightly different aspects of improving the self. The observed 
responses to these survey items can then be combined to repre-
sent the construct agentic goal endorsement. To combine a num-
ber of items to represent one construct, the researcher must 
provide evidence that these items truly represent the same con-
struct. In this paper, we provide an overview of the evidence 
necessary to have confidence in using a survey instrument for 
one’s specific purpose and go into depth for one type of statisti-
cal evidence for validity: factor analysis.

Aims
The aims of this article are 1) to briefly review the theoretical 
background for instrument validation and 2) to provide a step-
by-step description of how to use factor analysis to gather evi-
dence about the number and nature of constructs in an instru-
ment. We begin with a brief theoretical background about 
validity and constructs to situate factor analysis in the larger 
context of instrument validation. Next, we discuss coefficient 
alpha, a statistic currently used, and often misused, in educa-
tional research as evidence for validity. The remainder of the 

article explores the statistical method of factor analysis. We 
describe what factor analysis is, when it is appropriate to use it, 
what we can learn from it, and the essential steps in conducting 
it. An evaluation of the number and nature of constructs in the 
Diekman et al. (2010) goal-endorsement instrument when used 
with first-year undergraduate science, technology, engineering, 
and mathematics (STEM) students is provided to illustrate the 
steps involved in conducting a factor analysis and how to report 
it in a paper (see Boxes 1–7). The illustrating example comes 
from a unique data collection and analysis made by the authors 
of this article. Data, annotated code, and output from the analy-
ses run in R (an open-source programming language and soft-
ware environment for statistical computing; R Core Team, 2016) 
for this example are included in the Supplemental Material.

WHAT IS VALIDITY?
The quality of measurements is important to all sciences. 
Although different terms are used in different disciplines, the 
underlining principles and problems are the same across disci-
plines. For example, in physics, the terms “accuracy” and “pre-
cision” are commonly used to describe how confident research-
ers should be in their measurements. In the discourse about 
survey quality, validity and reliability are the key concepts for 
measurement quality. Roughly, validity refers to whether an 
instrument actually measures what it is designed to measure 
and reliability is the consistency of the instrument’s 
measurements.

In this section, we will briefly outline what validity is and the 
many types of validity evidence. Reliability, and its relation to 
validity, will be discussed in The Misuse of Coefficient Alpha. 
Before getting into the details, we need to emphasize a critical 
concept about validity that is often overlooked: validity is not a 
characteristic of an instrument, but rather a characteristic of the 
use of an instrument in a particular context. Anytime an instru-
ment is used in a new context, at least some measures of its 
validity must be established for that specific context.

Validity Is Not a Property of the Instrument
The concept of validity within educational measurements has 
been acknowledged and discussed for a long time (e.g., Cron-
bach and Meehl, 1955; Messick, 1995; Cizek, 2016; Kane, 
2016; Slaney, 2017). According to the latest Standards for Edu-
cational and Psychological Testing published by the American 
Educational Research Association (AERA), American Psychol-
ogy Association (APA) & National Council on Measurement in 
Education (NCME) in 2014:

Validity refers to the degree of which evidence and theory sup-
port the interpretations of the test score for the proposed use. 
(AERA, APA, and NCME, 2014, p. 11)

Thus, validity is not a property of the measurement instru-
ment but rather refers to its proposed interpretation and use. 
Validity must be considered each time an instrument is used 
(Kane, 2016). An instrument may be validated for a certain pop-
ulation and purpose, but that does not mean it will work across 
all populations and for all purposes. For example, a validation 
of Diekman’s goal-endorsement instrument (Diekman et al., 
2010) as a reasonable measure of university students’ goal 
endorsement does not automatically validate the use of the 

2“Latent variables” and “constructs” both refer to phenomena that are not directly 
observable. Examples could include a student’s goals, the strength of his or her 
interest in biology, or his or her tolerance of failure. The term “latent variable” is 
commonly used when discussing these phenomena from a measurement point of 
view, while “construct” is a more general term used when discussing these 
phenomena from a theoretical perspective. In this article, we will use the term 
“construct” only when referring to phenomena that are not directly observable.



CBE—Life Sciences Education • 18:rm1, Spring 2019 18:rm1, 3

Factor Analysis

instrument for measuring 6-year-olds’ goal endorsement. Simi-
larly, a test validated for one purpose, such as being a reasonable 
measure of sixth-grade mathematical achievement, does not 
automatically validate it for use with other purposes, such as 
placement and advancement decisions (Kane, 2016). The valida-
tion of a survey may also be time sensitive, as cultures continu-
ally change. Using a survey from the 1980s about the use of tech-
nology would be employing a dated view of what is meant by 
“technology” today.

Types of Validity Evidence
Validation is a continuous and iterative process of collecting 
many different types of evidence to support that researchers are 
measuring what they aim to measure. The latest Standards for 
Educational and Psychological Testing describes many types of 
validity evidence to consider when validating an instrument for 
a particular purpose (AERA, APA, and NCME, 2014, chap. 1). 
These types of evidence and illustrative examples are summa-
rized in Table 1. For example, one important aspect to consider 
is whether the individual items that make up the survey are 
interpreted by the respondents in the way intended by the 
researcher. Researchers must also consider whether the indi-
vidual items constitute a good representation of the construct 
and whether the items collectively represent all the important 
aspects of that construct. Looking at our illustrative example 
(Box 1 and Table 2), we could ask whether items 15–23 (i.e., 
helping others, serving humanity, serving community, working 
with people, connection with others, attending to others, caring 
for others, intimacy, and spiritual rewards) in the goal-endorse-
ment instrument constitute a good representation of the 

construct “helping others and one’s community”? Yet another 
type of validity evidence involves demonstrating that the scores 
obtained for a construct on an instrument of interest correlate 
to other measures of the same or closely related constructs.

The use of existing surveys usually allows the collection of 
less validity evidence than the creation and use of a new survey. 
Specifically, if previous studies collected validity evidence for the 
use of the survey for a similar purpose and with a similar popu-
lation as the intended research, researchers can then reference 
that validity evidence and present less of their own. It is import-
ant to note that, even if a survey has a long history of established 
use, this alone does not provide adequate validity evidence for it 
being an appropriate measurement instrument. It is worth 
researchers’ time to go through the published uses of the survey 
and identify all the different types of validity evidence that have 
been collected. They can then identify the additional evidence 
they want to collect to feel confident applying the instrument for 
their intended interpretation and use. For a more detailed 
description of different types of validity evidence and a pedagog-
ical description of the process of instrument validation, see 
Reeves and Marbach-Ad (2016) and Andrews et al. (2017).

In this article, we will focus on the third type of validity evi-
dence listed in Table 1, evidence based on internal structure. 
Investigating the internal structure of an instrument is crucial in 
order to be confident that you can combine several related 
items to represent a specific construct. We will describe an 
empirical tool to gather information about the internal relation-
ships between items in a measurement instrument: factor anal-
ysis. On its own, factor analysis is not sufficient to establish the 
validity of the use of an instrument in a researcher’s context and 

TABLE 1. Types of validity evidence to consider when validating an instrument according to the Standards for Educational and 
 Psychological Testing (AERA, APA, and NCME, 2014)

Type of validity evidence Definition Example considerationsa

Evidence based on test content Analyses of the relationship between an 
instrument’s content and the construct it is 
intended to measure

Does this instrument represent the appropriate aspects 
of communal goals (construct) as described by the 
theoretical framework?

Evidence based on response 
processes

Information on how respondents answer the 
instrument’s items

Is it reasonable to assume that the respondents were 
motivated and honest when answering the 
instrument?

Did the respondents understand the items as intended 
by the researcher?

Evidence based on internal 
structure

Analyses of internal relationships between 
instrument items and instrument 
 components and how they conform to the 
intended construct

Does factor analysis support the relationships between 
items suggested by the theoretical framework?

Evidence based on relations to 
other variables

Analyses of the relationships of instrument 
scores to variables external to the instrument 
and to other instruments that measure the 
same construct or related constructs

Can the instrument detect differences in the strength of 
communal goal endorsement between women and 
men that has been found by other instruments?

Does the instrument correlate in expected ways with 
similar and/or dissimilar measures?

Evidence based on the conse-
quences of testingb

The extent to which the consequences of the 
use of the score are congruent with the 
proposed uses of the instrument

Will the use of the instrument cause any unintended 
consequences for the respondent?

Is the instrument identifying students who need extra 
resources as intended?

aMany of the example considerations are in reference to the elements in the Diekman et al. (2010) instrument; we provide these only as motivating examples and 
encourage readers to apply the example within their own work.
bIf and how to include consequences of testing as a measure of validity is highly debated in educational and psychological measurement (see Mehrens, 1997; Lissitz and 
Samuelsen, 2007; Borsboom et al., 2004; Cizek, 2016; Kane, 2016). We chose to present the view of validity as described in the latest Standards for Educational and 
Psychological Testing (AERA, APA, and NCME, 2014).



18:rm1, 4  CBE—Life Sciences Education • 18:rm1, Spring 2019

E. Knekta et al.

BOX 1. How to describe the purpose (abbreviated), instrument, and sample for publication illustrated with the goal- endorsement 
example

Defining the construct and intended use of the instrument
The aim of this study was to analyze the internal structure of the goal-endorsement instrument described by Diekman et al. (2010) for 
use with incoming first-year university STEM students. The objective is to use the knowledge gained through the survey to design STEM 
curricula that might leverage the goals students perceive as most important to increase student interest in their STEM classes.

The theoretical framework leading to the development of this survey has a long and well-established history. In 1966, Bakan (1966) 
originally proposed that two orientations could be used to characterize the human experience: agentic (orientation to the self) and 
communal (orientation to others). Agentic goals can thus be seen as goals focusing on improving the self or one’s own circumstances. 
Communal goals are goals focusing on helping others and one’s community and being part of a community. Gender socialization theory 
contributed to our understanding of who holds these goals most strongly: women are socialized to desire and assume more communal 
roles, while males assume more agentic roles (Eagly et al., 2000; Prentice and Carranza, 2002; Su et al., 2009).

This framework and survey were first used in the context of STEM education by Diekman et al. (2010). They found these two goal 
orientations to be predictive of women’s attrition from STEM, particularly when they perceive STEM careers to be at odds with the 
communal goals important to them. Current research in this area has expanded beyond the focus on gender differences and has recog-
nized that all humans value communal goals to some degree and that there is also variation in importance placed on communal goals 
by racial and ethnic groups (Smith et al., 2014), social class (Stephens et al., 2012), and college generation status (Allen et al., 2015). 
The majority of this work has been done with the general population of undergraduates. Our proposed use of the survey is to explore 
the variation in goals among different groups in a STEM-exclusive sample.

The instrument
The goal-endorsement survey described by Diekman et al., (2010) aims to measure how others-focused (communal) versus self-focused 
(agentic) students are. The instrument asks students to rate “how important each of the following kinds of goals [is] to you personally” on 
a scale of 1 (not at all important) to 7 (very important). The original measurement instrument has 23 items that have been reported as two 
factors: agentic (14 items) and communal (nine items) goals (see Table 2 for a listing of the items). The survey has been used many times 
in different contexts and has been shown to be predictive in ways hypothesized by theory. Diekman et al. (2010) briefly report on an EFA 
supporting the proposed two-factor structure of the instrument with a sample of undergraduates from introductory psychology courses.

Data collection and participants
The questionnaire was distributed in Fall 2015 and 2016 to entering first-year undergraduate students in STEM fields (biology, bio-
chemistry, physics, chemistry, math, and computer science) at a large southern U.S. R1 university. Students took the questionnaire in 

TABLE 2. Items included in the Diekman et al. (2010) goal-endorsement instrumenta

Three-factor solution Four-factor solution Five-factor solution

Items 1 2 3 1 2 3 4 1 2 3 4 5

1 Power 0.74 0.74 0.76
2 Recognition 0.69 0.60 0.60
3 Achievement 0.44 0.69 0.68
4 Mastery 0.45 0.20 0.39 0.38
5 Self-promotion 0.56 0.59 0.21 0.56 0.21
6 Independence 0.65 0.66 0.66
7 Individualism 0.62 0.65 0.65
8 Status 0.79 0.75 0.74
9 Focus on the self 0.50 0.47 0.20 0.47
10 Success 0.23 0.39 0.65 0.65
11 Financial rewards 0.59 0.55 0.52
12 Self-direction 0.64 0.56 0.56
13 Demonstrating skills or competence 0.48 0.46 0.20 0.43
14 Competition 0.33 0.25 0.34 0.36

15 Helping others 0.86 0.86 0.82
16 Serving humanity 0.72 0.74 0.80
17 Serving community 0.77 0.76 0.83
18 Working with people 0.48 0.48 0.65
19 Connection with others 0.49 0.49 0.82
20 Attending to others 0.77 0.78 0.76 0.27
21 Caring for others 0.81 0.80 0.70 0.22
22 Intimacy 0.23 0.24 0.25 0.27 0.30
23 Spiritual rewards 0.46 0.46 0.47
aItems 1–14 originally represented the agentic scale, and items 15–23 represented the communal scale. Standardized pattern coefficients from the initial EFA for the 
three-, four-, and five-factor solutions are reported in columns 3–14. For clarity, pattern coefficients <0.2 are not shown.



CBE—Life Sciences Education • 18:rm1, Spring 2019 18:rm1, 5

Factor Analysis

for their purpose. However, when factor analysis is combined 
with other validity evidence, it can increase a researcher’s con-
fidence that they are invoking the theoretical frameworks used 
in the development of the instrument: that is, the researcher is 
correctly interpreting the results as representing the construct 
the instrument purports to measure.

INSTRUMENT SCOPE: ONE OR SEVERAL CONSTRUCTS?
As described in Measuring Variables That Are Not Directly 
Observable, a construct cannot be directly measured. Instead, 
different aspects of a construct are represented by different 
individual items. The foundational assumption in instrument 
development is that the construct is what drives respondents to 
answer similarly on all these items. Thus, it is reasonable to 
distill the responses on all these items into one single score and 
make inferences about the construct. Measurement instruments 
can be used to measure a single construct, several distinct con-
structs, or even make finer distinctions within a construct. The 
number of intended constructs or aspects of a construct to be 
measured are referred to as an instrument’s dimensionality.

Unidimensional Scales
An instrument that aims to measure one underlying construct is 
a unidimensional scale. To interpret a set of items as if they 
measure the same construct, one must have both theoretical 
and empirical evidence that the items function as intended; that 
they do, indeed represent a single construct. If a researcher 
takes a single value (such as the mean) to represent a set of 
responses to a group of items that are unrelated to one another 
theoretically (e.g., I like biology, I enjoy doing dissection, I 
know how to write a biology lab report), the resulting value 
would be difficult to interpret at best, if not meaningless. While 
all of these items are related to biology, they do not represent a 
specific, common construct. Obviously, taking the mean 
response from these three items as a measure of interest in biol-
ogy would be highly problematic. For example, one could be 
interested in biology but dislike dissection, and one’s laboratory 
writing skills are likely influenced by aspects other than interest 
in biology. Even when a set of items theoretically seem to mea-
sure the same construct, the researcher must empirically show 
that students demonstrate a coherent response pattern over the 
set of items to validate their use to measure the construct. If 
students do not demonstrate a coherent response, this indicates 
that the items are not functioning as intended and they may not 
all measure the same construct. Thus, the single value used to 
represent the construct from that group of items would contain 
very little information about the intended construct.

Multidimensional Scales
An instrument that is constructed to measure several related 
constructs or several different aspects of a construct is called a 

multidimensional scale. For example, the Diekman et al. (2010) 
goal-endorsement instrument (see items in Box 1 and Table 2) 
we use in this article is a multidimensional scale: it theoretically 
aims to measure two different aspects of student goal endorse-
ment. To be able to separate the results into two subscales, one 
must test that the items measure distinctly different constructs. 
It is important to note that whether a set of items represents 
different constructs can differ depending on the intended pop-
ulations, which is why collecting evidence on the researcher’s 
own population is so critical. Wigfield and Eccles (1992) illus-
trate this concept in a study of children of different ages. 
Children in early or middle elementary school did not seem to 
distinguish between their perceptions of interest, importance, 
and usefulness of mathematics, while older children did appear 
to differentiate between these constructs. Thus, while it is 
meaningful to discuss interest, importance, and usefulness as 
distinct constructs for older children, is it not meaningful to do 
so with younger children.

In summary, before using a survey, one has to have gathered 
all the appropriate validity evidence for the proposed interpre-
tations and use. When measuring a construct, one important 
step in this validation procedure is to explicitly describe and 
empirically analyze the assumed dimensionality of the survey.

THE MISUSE OF COEFFICIENT ALPHA: 
UNDERSTANDING THE DIFFERENCE BETWEEN 
RELIABILITY AND VALIDITY
In many biology educational research papers, researchers only 
provide coefficient alpha (also called Cronbach’s alpha) as evi-
dence of validity. For example, in Eddy et al. (2015), the 
researchers describe the alpha of two scales on a survey and no 
other evidence of validity or dimensionality. This usage is 
widely agreed to be a misuse of coefficient alpha (Green and 
Yang, 2009). To understand why this is the case, we have to 
understand how validity and reliability differ and what specifi-
cally coefficient alpha measures.

Reliability is about consistency when a testing procedure is 
repeated (AERA, APA, and NCME, 2014). For example, assum-
ing that students do not change their goal endorsement, do 
repeated measurements of students’ goal endorsement using 
Diekman’s goal-endorsement instrument give consistent 
results? Theoretically, reliability can be defined as the ratio 
between the true variance in the construct among the partici-
pating respondents (the latent, unobserved variance the 
researcher aims to interpret) and the observed variance as mea-
sured by the measurement instrument (Crocker and Algina, 
2008). The observed variance for an item is a combination of 
the true variance and measurement error. Measurement error is 
the extent that responses are affected by factors other than the 
construct of interest (Fowler, 2014). For example, ideally, stu-
dents’ responses to Diekman’s goal-endorsement instrument 

the weeks before their first Fall semester. In total, 796 students (70% women) completed the questionnaire. Fifteen percent of the 
students were first-generation students, and 24% came from underrepresented minorities.

Sample size
In our study, the total sample size was 796 students. Considering the number of factors (two) and the relatively large number of items 
per factor (nine and 14), the sample size was deemed more than sufficient to perform factor analysis (Gagne and Hancock, 2006; Wolf 
et al., 2013).
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3In addition to coefficient alpha, there are a number of other reliability estimates 
available. We refer interested readers to Bandalos (2018), Sijtsma (2009), and 
Crocker and Algina (2008).

would only be affected by their actual goal endorsement. But 
students’ responses may also be affected by things unrelated to 
the construct of goal endorsement. For instance, responses on 
communal goals items may be influenced by social desirability, 
students’ desire to answer in a way that they think others would 
want them to. Students’ responses on items may also depend on 
external circumstances while they were completing the survey, 
such as time of the day or the noise level in their environment 
when they were taking the survey. While it is impossible to 
avoid measurement error completely, minimizing measure-
ment error increases the ratio between the true and the 
observed variance, which increases the likelihood that the 
instrument will yield similar results over repeated use.

Unfortunately, a construct cannot, by definition, be directly 
measured; the true score variance is unknown. Thus, reliability 
itself cannot be directly measured and must be estimated. One 
way to estimate reliability is to distribute the instrument to the 
same group of students multiple times and analyze how similar 
the responses of the same students are over time. Often it is not 
desirable or practically feasible to distribute the same instru-
ment multiple times. Coefficient alpha provides a means to esti-
mate reliability for an instrument based on a single distribu-
tion.3 Simply put, coefficient alpha is the correlation of an 
instrument to itself (Tavakol and Dennick, 2011). Calculation 
of coefficient alpha is based on the assumption that all items in 
a scale measure the same construct. If the average correlation 
among items on a scale is high, then the scale is said to be 
reliable.

The use and misuse of coefficient alpha as an estimate of 
reliability has been extensively discussed by researchers (e.g., 
Green and Yang, 2009; Sijtsma, 2009; Raykov and Marcoulides, 
2017; McNeish, 2018). It is outside the scope of this article to 
fully explain and take a stand among these arguments. Although 
coefficient alpha may be a good estimator of reliability under 
certain circumstances, it has limitations. We will further elabo-
rate on two limitations that are most pertinent within the 
context of instrument validation.

Limitation 1: Coefficient Alpha Is about Reliability, 
Not Validity
A high coefficient alpha does not prove that researchers are 
measuring what they intended to measure, only that they mea-
sured the same thing consistently. In other words, coefficient 
alpha is an estimation of reliability. Reliability and validity com-
plement each other: for valid interpretations to be made using 
an instrument, the reliability of that instrument must be high. 
However, if the test is invalid, then reliability does not matter. 
Thus, high reliability is necessary, but not sufficient, to make 
valid interpretations from scores resulting from instrument 
administration. Consider this analogy using observable phe-
nomena: a calibrated scale might produce consistent values for 
the weight of a student and thus the measure is reliable, but 
using this score to make interpretations about the students’ 
height would be completely invalid. Similarly, a survey’s coeffi-
cient alpha could be high, but the survey instrument could still 
not be measuring what the researcher intended it to measure.

Limitation 2: Coefficient Alpha Does Not Provide Evidence 
of Dimensionality of the Scale
Coefficient alpha does not provide evidence for whether the 
instrument measures one or several underlying constructs 
(Schmitt, 1996; Sijtsma, 2009; Yang and Green, 2011). Schmitt 
(1996) provides two illustrative examples of why a high coeffi-
cient alpha should not be taken as a proof of a unidimensional 
instrument. He shows that a six-item instrument, in which all 
items have equal correlations to one another (unidimensional 
instrument), could yield the same coefficient alpha as a six-item 
instrument with item correlations clearly showing a two-dimen-
sional pattern (i.e., an instrument with item correlation of 0.5 
across all items has the same coefficient alpha as an instrument 
with item correlations of 0.8 between some items and items 
correlations of 0.3 between other items). Thus, as Yang and 
Green (2011) conclude, “A scale can be unidimensional and 
have a low or a high coefficient alpha; a scale can be multidi-
mensional and have a low or a high coefficient alpha” (p. 380).

In conclusion, reporting only coefficient alpha is not suffi-
cient evidence 1) to make valid interpretations of the scores 
from an instrument or 2) to prove that a set of items measure 
only one underlying construct (unidimensionality). We encour-
age readers interested in learning more about reliability to read 
chapters 7–9 in Bandalos (2018). In the following section, we 
describe another statistical tool, factor analysis, which actually 
tests the dimensionality among a set of items.

FACTOR ANALYSIS: EVIDENCE OF DIMENSIONALITY 
AMONG A SET OF ITEMS
Factor analysis is a statistical technique that analyzes the rela-
tionships between a set of survey items to determine whether 
the participant’s responses on different subsets of items relate 
more closely to one another than to other subsets, that is, it is 
an analysis of the dimensionality among the items (Raykov and 
Marcoulides, 2008; Leandre et al., 2012; Tabachnick and Fidell, 
2013; Kline, 2016; Bandalos, 2018). This technique was explic-
itly developed to better elucidate the dimensionality underpin-
ning sets of achievement test items (Mulaik, 1987). Speaking in 
terms of constructs, factor analysis can be used to analyze 
whether it is likely that a certain set of items together measure 
a predefined construct (collecting validity evidence relating to 
internal structure; Table 1). Factor analysis can broadly be 
divided into exploratory factor analysis (EFA) and confirmatory 
factor analysis (CFA).

Exploratory Factor Analysis
EFA can be used to explore patterns underlying a data set. As 
such, EFA can elucidate how different items and constructs 
relate to one another and help develop new theories. EFA is 
suitable during early stages of instrument development. By 
using EFA, the researcher can identify items that do not empir-
ically belong to the intended construct and that should be 
removed from the survey. Further, EFA can be used to explore 
the dimensionality of the instrument. Sometimes EFA is con-
flated with principal component analysis (PCA; Leandre et al., 
2012). PCA and EFA differ from each other in several funda-
mental ways. EFA is a statistical technique that should be used 
to identify plausible underlying constructs for a set of items. In 
EFA, the variance the items share is assumed to represent the 
construct and the nonshared variance is assumed to represent 
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FIGURE 1. Conceptual illustration of EFA and CFA. Observed variables (items 1–8) by 
squares, and constructs (factors F1 and F2) are represented by ovals. Factor loading/
pattern coefficients representing the effect of the factor on the item (i.e., the unique 
correlation between the factor and the item) are represented by arrows. σ

j
, variance for 

factor j; E
i
, unique error variance for item i. The factor loading for one item on each factor 

is set to 1 to give the factors an interpretable scale.

measurement errors. PCA is a data reduction technique that 
does not assume an underlying construct. PCA reduces a num-
ber of observed variables to a smaller number of components 
that account for the most variance in the observed variables. In 
PCA, all variance is considered, that is, it assumes no measure-
ment errors. Within educational research, PCA may be useful 
when measuring multiple observable variables, for example, 
when creating an index from a checklist of different behaviors. 
For readers interested in reading more about the distinction 
between EFA and PCA and why EFA is the most suitable for 
exploring constructs, see Leandre et al. (2012) or Raykov and 
Marcoulides (2008).

Confirmatory Factor Analysis
CFA is used to confirm a previously stated theoretical model. 
Essentially, when using CFA, the researcher is testing whether 
the data collected supports a hypothesized model. CFA is suit-
able when the theoretical constructs are well understood and 
clearly articulated and the validity evidence on the internal 
structure of the scale (the relationship between the items) has 
already been obtained in similar contexts. The researcher can 
then specify the relationship between the item and the con-
struct and use CFA to confirm the hypothesized number of 

constructs, the relationship between the 
constructs, and the relationship between 
the constructs and the items. CFA may be 
appropriate when a researcher is using a 
preexisting survey that has an established 
structure with a similar population of 
respondents.

A Brief Technical Description of Factor 
Analysis
Mathematically, factor analysis involves 
the analysis of the variances and covari-
ances among the items. The shared vari-
ance among items is assumed to represent 
the construct. In factor analysis, the con-
structs (the shared variances) are com-
monly referred to as factors. Nonshared 
variance is considered error variance. 
During an EFA, the covariances among all 
items are analyzed together, and items 
sharing a substantial amount of variance 
are collapsed into a factor. During a CFA 
the shared variance among items that are 
prespecified to measure the same underly-
ing construct is extracted. Figure 1 illus-
trates EFA and CFA on an instrument 
consisting of eight observable variables 
(items) aiming to measure two constructs 
(factors): F1 and F2. In EFA, no a priori 
assumption of which items represent 
which factors is necessary: the EFA deter-
mines these relationships. In CFA, the 
shared variance of items 1–4 are specified 
by the researcher to represent F1, and the 
shared variance of items 5–8 are specified 
to represent F2. Even further, part of what 
CFA tests is that items 1–4 do not repre-

sent F2, and items 5–8 do not represent F1. For both EFA and 
CFA, nonshared variance is considered error variance.

Figures illustrating the relationships between items and fac-
tors (such as Figure 1) are interpreted as follows. The dou-
ble-headed arrow between the factors represents the correla-
tion between the two factors (factor correlations). Each one- 
directional arrow between the factors and the items represents 
the unique correlation between the factor and the item (called 
“pattern coefficient” in EFA and “factor loading” in CFA). The 
pattern coefficients and factor loadings are similar to regression 
coefficients in a multiple regression. For example, consider the 
self-promotion item on Diekman’s goal-endorsement instru-
ment. The factor loading/pattern coefficient for this item tells 
the researcher how much of the average respondent’s answer 
on this item is due to his or her general interest in agentic goals 
versus something unique about that item (error variance). For 
readers interested in more mathematical details about factor 
analysis, we recommend Kline (2016), Tabachnick and Fidell 
(2013), or Yong and Pearce (2013).

Should EFA and CFA Be Applied on the Same Sample?
If a researcher decides that EFA is the best approach for analyz-
ing the data, the results from the EFA should ideally be confirmed 
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with a CFA before using the measurement instrument for 
research. This confirmation should never be conducted on the 
same sample as the initial EFA. Doing so does not provide gen-
eralizable information, as the CFA will be (essentially) repeating 
many of the relationships that were established through the 
EFA. Additionally, there could be something nuanced about the 
way the particular sample responds to items that might not be 
found in a second sample. For these reasons (among others), it 
is best practice to perform an EFA and CFA on independent sam-
ples. If a researcher has a large enough sample size, this can be 
done by randomly dividing the initial sample into two indepen-
dent groups. It is also not uncommon for a researcher using an 
existing survey to decide that a CFA is suitable to start with but 
then discover that the data do not fit to the theoretical model 
specified. In this case, it is completely justified and recom-
mended to conduct a second round of analyses starting with an 
EFA on half of the initial sample followed by a CFA on the other 
half of the sample (Bandalos and Finney, 2010).

FACTOR ANALYSIS STEP BY STEP
In this section, we 1) describe the important considerations 
when preparing to perform a factor analysis, 2) introduce the 
essential analytical decisions made during an analysis, and 
3) discuss how to interpret the outputs from factor analyses. 
We illustrate each step with real data using factor analysis to 
analyze the dimensionality of a goal-endorsement instrument 
(Diekman et al., 2010). Further, annotated code and output for 
running and analyzing EFA and CFA in R are provided as 
Supplemental Material (R syntax and Section 2) along with 
sample data.

Before delving into the technical details, we would like to 
be clear that conducting a factor analysis involves many deci-
sions. There are no golden rules to follow to make these deci-
sions. Instead, the researcher must make holistic judgments 
based on his or her specific context and available theoretical 
and empirical information. Factor analysis requires collecting 
evidence to build an argument to support a suggested instru-
ment structure. The more time a researcher spends with the 
data investigating the effect of different possible decisions, the 
more confident they will be in finalizing the survey structure. 
As always, it is critical that a researcher’s decisions are guided 
by previously collected evidence and empirical information 
and not by a priori assumptions that the researcher wishes to 
support.

Defining the Construct and Intended Use of the Instrument
An essential prerequisite when selecting (or developing) and 
analyzing an instrument is to explicitly define the intended pur-
pose and use of the instrument. Further, the theoretical con-
struct or constructs that one aims to measure should be clearly 
defined, and the current general understanding of the construct 
should be described. The next step is to confirm a good align-
ment between the construct of interest and the instrument 
selected to measure it, that is, that the items on the instrument 
actually represent what one aims to measure (evidence based 
on content; Table 1). For a researcher to be able to use CFA for 
validation, an instrument must include at least four items in 
total. A multidimensional scale should have at least three but 
preferably five or more items for each theorized subscale. In 
very special cases, two items can be acceptable for a subscale 

(Yong and Pearce, 2013; Kline, 2016).4 For an abbreviated 
example of how to write up this type of validity for a manu-
script using a survey instrument, see Box 1.

Sample Size
The appropriate sample size needed for factor analysis is a mul-
tifaceted question. Larger sample sizes are generally better, as 
they will enhance the accuracy of all estimates and increase 
statistical power (Gagne and Hancock, 2006). Early guidelines 
on sample sizes for factor analysis were general in their nature, 
such as a minimum sample size of 100 or 200 (e.g., see 
Boomsma, 1982; Gorsuch, 1983; Comrey and Lee, 1992). 
Although it is very tempting to adopt such general guidelines, 
caution must be taken, as they might lead to underestimating or 
overestimating the sample size needed (Worthington and Whit-
taker, 2006; Tabachnick and Fidell, 2013; Wolf et al., 2013).

The sample size needed depends on many elements, includ-
ing number of factors, number of items per factor, size of factor 
loadings or pattern coefficients, correlations between factors, 
missing values in the data, reliability of the measurements, and 
the expected effect size of the parameters of interest (Gagne 
and Hancock, 2006; Worthington and Whittaker, 2006; Wolf 
et al., 2013). Wolf et al. (2013) showed that a sufficient sample 
size for a one-factor CFA with eight items and factor loadings of 
0.8 could be as low as 30 respondents. For a two-factor CFA 
with three or four items per scale and factor loadings of 0.5, a 
sample size of ∼450 respondents is needed. For EFA, Leandre 
et al. (2012) recommend that “under moderately” good condi-
tions (communalities5 of 0.40–0.70 and at least three items for 
each factor), a sample of at least 200 should be sufficient, while 
under poor conditions (communalities lower than 0.40 and 
some factors with only two items for each factor), a sample size 
of at least 400 is needed. Thus, when deciding on an appropri-
ate sample size, one should consider the unique properties of 
the actual survey. The articles written by Wolf et al. (2013) and 
Gagne and Hancock (2006) provide a good starting point for 
such considerations. See Box 1 for an example of how to discuss 
sample size decisions in a manuscript.

In some cases, it may be implausible to have the large sam-
ple sizes necessary to obtain stable estimates from an EFA or a 
CFA. Often researchers must work with data that have already 
been collected or are using a study design that simply does not 
include a large number of respondents. In these circumstances, 
it is strongly recommended that one use a measurement instru-
ment that has already been validated for use in a similar popu-
lation for a similar purpose. In addition to considering and ana-
lyzing other relevant types of validity evidence (see Table 1), 
the researchers should report on validity evidence based on 
internal structure from other studies and describe the context of 
those studies relative to their own context. The researchers 
should also acknowledge in the methods and limitation sec-
tions that they could not run dimensionality checks on their 
sample. Further, researchers can also analyze a correlation 
matrix6 of the responses to the survey items from their own 

4This is partly due to identification issues (see Specifying the Model).
5In EFA, communalities describe how much of the variance in an item is explained 
by the factor. For more information about communalities, see Interpreting Output 
from EFA.
6For a description of a correlation matrix, see the Supplemental Material, Sections 
1 and 2.
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BOX 2. What to report in the methods of a publication for a CFA using the goal-endorsement example

We chose to start with a CFA to confirm a two-factor solution, because 1) the theoretical framework underlying the instrument is well 
understood and articulated and 2) Diekman et al. (2010) performed an EFA on a similar population to ours that supported the two-fac-
tor solution. If the assumed factor model was confirmed, then we could confidently combine the items into two sum scores and interpret 
the data as representing both an agentic and a communal factor. CFA was run using the R package lavaan (Rosseel, 2012).

Selecting an estimator
In consideration of the ordinal and nonnormal nature of the data, the robust maximum-likelihood estimation (MLR) was used to extract 
the variances from the data. Full-information maximum likelihood in the estimation procedure was used to handle the missing data.

Specifying a two-factor CFA
To confirm the factor structure proposed by Diekman et al. (2010), we specified a two-factor CFA, with items 1–14 representing the 
agentic scale and items 15–23 representing the communal factor (Table 2). Correlation between the two factors was allowed. For iden-
tification purposes, the factor loading for one item on each factor was set to 1. The number of variances and covariances in the data was 
276 (23(23 + 1)/2), which was larger than the number of parameter estimates (one factor correlation, 23 error terms, 21 factor load-
ings, and variances for each factor). Thus, the model was overidentified.

Selecting model fit indices and setting cutoff values
Multiple fit indices (chi-square value from robust MLR [MLR χ2]; comparative fit index [CFI]; the root-mean-square error of approxi-
mation [RMSEA]; and the standardized root-mean-square residual [SRMR]) were consulted to evaluate model fit. The fit indices were 
chosen to represent an absolute, a parsimony-adjusted, and an incremental fit index. Consistent with the recommendations by Hu and 
Bentler (1999), the following criteria were used to evaluate the adequacy of the models: CFI > 0.95, SRMR < 0.08, and RMSEA < 0.06. 
Coefficient alpha was computed based on the model results and used to assess reliability. Values > 0.70 were considered acceptable.

data collection to get a sense of how the items may relate to one 
another in their context. This correlation matrix may be 
reported to help provide preliminary validity evidence based on 
internal structure.

Properties of the Data
As with any statistical analysis, before performing a factor anal-
ysis the researcher must investigate whether the data meet the 
assumptions for the proposed analysis. Section 1 of the Supple-
mental Material provides a summary of what a researcher 
should check for in the data for the purposes of meeting the 
assumptions of a factor analysis and an illustration applied to 
the example data. These include analyses of missing values, 
outliers, factorability, normality, linearity, and multicollinear-
ity. Box 3 provides an example of how to report these analyses 
in a manuscript.

Analytic Considerations for CFA
Once the data are screened to determine their properties, sev-
eral analytical decisions must be made. Because there are some 
differences in analytical decisions and outputs for EFA and CFA, 
we will discuss EFA and CFA in separate sections. We will start 
with CFA, as most researchers adopting an existing instrument 
will use this method first and may not ever need to perform an 
EFA. See Box 2 for how to report analytical considerations for a 
CFA in a manuscript.

Selecting an Estimator. When performing a CFA, a researcher 
must choose a statistical method for extracting the variance 
from the data. There are several different methods available, 
including unweighted least squares, generalized least squares, 
maximum likelihood, robust maximum likelihood, principal 
axis factoring, alpha factoring, and image factoring. Each of 
these methods has its strengths and weaknesses. Kline (2016) 
and Tabachnick and Fidell (2013) provide a useful discussion 

of several of these methods and when best to apply each one. 
In general, because data from surveys are often on an ordinal 
level (e.g., data from Likert scales) and sometimes slightly 
nonnormally distributed, estimators robust against nonnor-
mality, such as maximum-likelihood estimation with robust 
standard errors (MLR) or weighted least-squares estimation 
(WLS), are often suitable for performing CFA. Whether or not 
MLR or WLS is most suitable depends partly on the number of 
response options for the survey items. MLR work best when 
data can be considered continuous. In most cases, scales with 
seven response options work well for this purpose, whereas 
scales with five response options are questionably continuous. 
MLR is still often used in estimation for five response options, 
but with four or fewer response options, WLS is better (Finney 
and DiStefano, 2006). The decision regarding the number of 
response options to include in a survey should not be driven 
by these considerations. Rather, the number of response 
options and properties of the data should drive the selection of 
the CFA estimator. Although more response options for an 
item allow researchers to model it as continuous, respondents 
may not be able to meaningfully differentiate between the dif-
ferent response options. Fewer response options usually offer 
less ambiguity, but usually result in less variation in the 
response. For example, if students are provided with 10 
options to indicate their level agreement with a given item, it 
is possible that not all of the response options may be used. In 
such a case, fewer response options may better capture the 
latent distribution of possible responses to an item.

Specifying the Model. The purpose of a CFA is to test whether 
the data collected with an instrument support the hypothesized 
model. Using theory and previous validations of the instrument, 
the researcher specifies how the different items and factors 
relate to one another (see Figure 1 for an example model). For 
a CFA, the number of parameters that the researcher aims to 



18:rm1, 10  CBE—Life Sciences Education • 18:rm1, Spring 2019

E. Knekta et al.

estimate (e.g., error terms, variances, correlations and factor 
loadings) must be less than or equal to the number of possible 
variances and covariances among the items (Kline, 2016). For a 
CFA, a simple equation tells you the number of possible vari-
ances and covariances: p(p + 1)/2, where p = number of items. 
If the number of parameters to estimate is more than the num-
ber of possible variances and covariances among the items, the 
CFA is called “underidentified” and will not provide interpreta-
ble results. When the number of parameters to be estimated 
equals the number of covariances and variances among the 
items, the model is deemed “just identified” and will result in 
perfect fit of the data to the model, regardless of the true rela-
tionship between the items. To test whether the data fit the 
theoretical model, the number of parameters that are being 
estimated needs to be less than the number of variances and 
covariances observed in the data. In this case, the model is 
“over identified.” For the example CFA in Figure 1, the number 
of possible variances and covariances is 8(8 + 1)/2 = 36, and 
the number of parameters to estimate is 17 (one factor correla-
tion, eight error terms, six factor loadings, and variances for 
each of the two factors7), thus the model is overidentified.

Choosing Appropriate Model Fit Indices. The true splendor 
of CFA is that so-called model fit indices have been developed 
to help researchers understand whether the data support the 
hypothesized theoretical model.8 The closest statistic to an 
omnibus test of model fit is the model chi-square test. The null 
hypothesis for the chi-square test is that there is no difference 
between the hypothesized model and the observed relation-
ships within the data. Several researchers argue that this is an 
unrealistic hypothesis (Hu and Bentler, 1999; Tabachnick and 
Fidell, 2013). A close approximation of the data to the model is 
more realistic than a perfect model fit. Further, the model chi-
square test is very sensitive to sample size (the chi-square statis-
tic tends to increase with an increase in sample size, all other 
considerations constant; Kline, 2016). Thus, while large sample 
sizes provide good statistical power, the null hypothesis that the 
factor model and the data do not differ from each other may be 
rejected although the difference is actually quite small. Given 
these concerns, it is important to consider the result of the chi-
square test in conjunction with multiple other model fit indices.

Many model fit indices have been developed that quantify 
the degree of fit between the model and the data. That is, the 
values provided by these indices are not intended to make 
binary (fit vs. no fit) judgments about model fit. These model fit 
indices can be divided into absolute, parsimony-adjusted, and 
incremental fit indices (Bandalos and Finney, 2010). Because 
each type of index has its strengths and weaknesses (e.g., sen-
sitivity to sample size, model complexity, or misspecified factor 
correlations), using at least two different types of fit indices is 
recommended (Hu and Bentler, 1999; Tabachnick and Fidell, 

2013). The researcher should decide a priori which model fit 
indices to use and the cutoff values that will be considered a 
good enough indicator of model fit to the data. Hu and Bentler 
(1999) recommend using one of the relative fix indices such as 
comparative fit index (CFI) with a cutoff of >0.95 in combina-
tion with standardized root-mean-square residual (SRMR; 
absolute fit indices, good model < 0.08) or root-mean-square 
error of approximation (RMSEA; parsimony-adjusted fit indi-
ces, good model < 0.06) as indicators for good fit. Some 
researchers, including Hu and Bentler (1999), caution against 
using these cutoff values as golden rules because it might lead 
to incorrect rejection of acceptable models (Marsh et al., 2004; 
Perry et al., 2015).

Interpreting the Outputs from CFA
After making all the suggested analytical decisions, a researcher 
is now ready to apply a CFA to the data. Model fit indices that 
the researcher a priori decided to use are the first element of the 
output that should be interpreted from a CFA. If these indices 
suggest that the data do not fit the specified model, then the 
researcher does not have empirical support for using the 
hypothesized survey structure. This is exactly what happened 
when we initially ran a CFA on Diekman’s goal-endorsement 
instrument example (see Box 3). In this case, focus should shift 
to understanding the source of the model misfit. For example, 
one should ask whether there are any items that do not seem to 
correlate with their specified latent factor, whether any correla-
tions seem to be missing, or whether some items on a factor 
group together more strongly than other items on that same 
factor. These questions can be answered by analyzing factor 
loadings, correlation residuals, and modification indices. In the 
following sections, we describe these in more detail. See Boxes 
3, 6, and 7 for examples of how to discuss and present output 
from a CFA in a paper.

Factor Loadings. As mentioned in Brief Technical Description of 
Factor Analysis, factor loadings represent how much of the 
respondent’s response to an item is due to the factor. When a 
construct is measured using a set of items, the assumption is that 
each item measures a slightly different aspect of the construct 
and that the common variance among them is the best possible 
representation of the construct. High, but not too high, factor 
loadings for these items are preferred. If several items have high 
standardized factor loadings9 (e.g., above 0.9), this suggests that 
they share a lot of variance, which indicates that these items 
may be too similar and thus do not contribute unique informa-
tion (Clark and Watson, 1995). On the other hand, if an item 
has a low factor loading on its focal factor, it means that item 
shares no or little variance with the other items that theoretically 
belong to the same focal factor and thus its contribution to the 
factor is low. Including items with low factor loadings when 
combining the scores from several items into a single score 

7It is necessary to set the metric to interpret factor loadings and variances in a CFA 
model. This is commonly done by either 1) choosing one of the factor loadings 
and fixing it to 1 (this is done for each factor in the model) or 2) by fixing the 
variance of the latent factors to 1. We have chosen the former approach for this 
example.
8For some software and estimation methods, model fit indices are also provided 
for EFA. In a similar way as for CFA, these model fit indices can be used to evalu-
ate the fit of the data to the model.

9When using CFA, the default setting in most software is to provide factor load-
ings in the original metric of the items, such that the results are covariances 
between the items and the factor. Because these values are unstandardized, it is 
sometimes hard to interpret these relationships. For this reason, it is common to 
standardize factor loadings and other model relationships (e.g., correlations 
between latent factors), which puts them in the more familiar correlation format 
that is bounded by −1 and +1.
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BOX 3. How to interpret and report CFA output for publication using the goal-endorsement example, initial CFA

Descriptive statistics
No items were missing more than 1.3% of their values, and this missingness was random (Little’s MCAR test: chi-square = 677.719, df 
= 625, p = 0.075 implemented with the BaylorEdPsych package; Beaujean, 2012). Mean values for the items ranged from 4.1 to 6.3. 
Most items had a skewness and kurtosis below |1.0|, and all items had a skewness below |2.0| and kurtosis below |4.0|. Mardia’s 
multivariate normality test (implemented with the psych package; Revelle 2017) showed significant multivariate skewness and kurtosis 
values. Intra-subscale correlations ranged from 0.02 to 0.73, and the lowest tolerance value was 0.36.

Interpreting output from the initial two-factor CFA
Results from the initial two-factor CFA indicated that, in our population, the data did not support the model specified. The chi-square 
test of model fit was significant (χ2 = 1549, df = 229, p < 0.00), but this test is known to be sensitive to minor model misspecification 
with large sample sizes (n = 796). However, additional model fit indices also indicated that the data did not support the model specified. 
SRMR was 0.079, suggesting good fit, but CFI was 0.818, and RMSEA was 0.084. Thus, the hypothesized model was not empirically 
supported by the data.

To better understand this model misspecification, we explored the factor loadings, correlational residuals, original interitem correla-
tion matrix, and modification indices. Several factor loadings were well below 0.7, indicating that the factors did not explain these items 
well. Analysis of correlational residuals did not point out any special item-pair correlation as especially problematic; rather, several 
correlational residuals were residuals greater than |0.10|. Consequently, the poor model fit did not seem to be primarily caused by a 
few ill-fitting items. A reinvestigation of the interitem correlation matrix made when analyzing the factorability of the data (see the 
Supplemental Material, Section 1) suggested the presence of more than two factors. This was most pronounced for the agentic scale, 
for which some items had a relatively high correlation to one another and lower correlations to other items in that scale. Inspection of 
the modification indices suggested adding correlations between, for example, the items achievement and mastery. Together, these 
patterns indicate that the data might be better represented by more than two factors.

(sum, average, or common variance) will introduce bias into the 
results.10 There is, however, no clear rule for when an item has 
a factor loading that is too low to be included. Bandalos and 
Finney (2010) argue that, because the items are specifically cho-
sen to indicate a factor, one would hope that the variability 
explained in the item by the factor would be high (at least 50%). 
Squaring the standardized factor loadings provides the amount 
of variability explained in the item by the factor (R2), indicating 
that it is desirable to have standardized factor loadings of at 
least 0.7 (R2 = 0.72 = ∼50%). However, the acceptable strength 
of the factor loading depends on the theoretically assumed rela-
tionship between the item and the factor. Some items might be 
more theoretically distant from the factor and therefore have 
lower factor loadings, but still comprise an essential part of the 
factor. This reinforces the idea that there are no hard and fast 
rules in factor analysis. Even if an item does not reach the sug-
gested level for factor loading, if a researcher can argue from a 
theoretical basis for its inclusion, then it could be included.

Correlation Residuals. As mentioned before, CFA is used to 
confirm a previously stated theoretical model. In CFA, the col-
lected data are used to evaluate the accuracy of the proposed 
model by comparing the discrepancy between what the theoret-
ical model implies (e.g., a two-factor model in the Diekman 
et al. [2010] example) and what is observed in the actual data. 
Correlation residuals represent the differences between the 
observed correlations in the data and the correlations implied 
by the CFA (Bandalos and Finney, 2010). Local areas of misfit 

can be identified by inspecting correlational residuals. Correla-
tion residuals greater than |0.10| are indicative of a specific 
item-pair relationship that is poorly reproduced by the model 
(Kline, 2016). This guideline may be too low when working 
with small sample sizes and too large when working with large 
samples sizes and, as with all other fit indices, should only be 
used as one element among many to understand model fit.

Modification Indices. Most statistical software used for CFA 
provides modification indices that can easily be viewed by the 
user. Modification indices propose a series of possible additions 
to the model and estimate the amount the model’s chi-square 
value would decrease if the suggested parameter were added 
(recall that a lower chi-square value indicates better model fit). 
For example, if an item strongly correlates with two factors but 
is constrained to only correlate with one, the modification 
index associated with adding a relationship to the second factor 
would indicate how much the chi-square model fit is expected 
to improve with the addition of this factor loading. In short, 
modification indices can be used to better understand which 
items or relationships might be driving the poor model fit.

If (and only if) theoretically justified, a suggested relation-
ship can be added or problematic items can be removed during 
a CFA. However, caution should be taken before adding or 
removing any parameters (Bandalos and Finney, 2010). As 
Bandalos and Finney (2010) state, “Researchers must keep in 
mind that the purpose of conducting a CFA study is to gain a 
better understanding of the underlying structure of the vari-
ables, not to force models to fit” (p. 112). If post hoc changes to 
the model are made, the analysis becomes more explorative in 
nature, and thus tenuous. The modified model should ideally be 
confirmed with a new data set to avoid championing a model 
that has an artificially good model fit.

Best practice if the model does not fit (as noted in Factor 
Analysis) is to split the data and conduct a second round of 

10When distilling the responses of several items into a single score, one is implic-
itly assuming that all of the items measure the underlying construct equally well 
(usually without measurement error) and are of equal theoretical importance. 
Fully discussing the nuances of how to create a single score from a set of items is 
beyond the scope of this paper, but we would be remiss if we did not at least 
mention it and encourage the reader to seek more information, such as DiStefano 
et al. (2009).
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analyses starting with an EFA using half of the sample and then 
conducting a CFA with the other half (Bandalos and Finney, 
2010). To see an example of how to write up this secondary CFA 
analysis, see Boxes 6 and 7 of the goal-endorsement example.

When the Model Fit Is Good. When model fit indices indicate 
that the hypothesized model is a plausible explanation of the rela-
tionships between the items in the data, factor loadings and the 
correlation between the latent variables in the model (so-called 
factor correlations) can be interpreted and a better understand-
ing of the construct can be gained. It is also now appropriate to 
calculate and report the coefficient alpha, omega, or any other 
index of reliability for each of the subscales. The researcher can 
more confidently use the results from the instrument to make 
conclusions about the intended constructs based on combined 
scale scores (given that other relevant validity evidence presented 
in Table 1 also supports the intended interpretations). 

If a researcher has used CFA to examine the dimensionality 
of the items and finds that the scale functions as intended, this 
information should be noted in the methods section of the 
research manuscript when describing the measurement instru-
ments used in the study. At the very least, the researcher should 
report the estimator and fit indices that were used and accom-
panying values for the fit indices. If the scale has been adapted 
in some way, or if it is being empirically examined for the first 
time, all of the factor loadings and factor correlations should 
also be reported so future researchers can compare their values 
with these original estimates. These could be reported as a 
standalone instrument validation paper or in the methods sec-
tion of a study using that instrument.

Analytical Considerations for EFA
If a researcher’s data do not fit the model proposed in the CFA, 
then using the items as indicators of the hypothesized construct 
is not sensible. If the researcher wants to continue to use the 
existing items, it is prudent to investigate this misfit to better 
understand the relationships between the items. This calls for 
the use of an EFA, where the relationships between variables 
and factors are not predetermined (i.e., a model is not specified 
a priori) but are instead allowed to emerge from the data. As 

mentioned before, EFA could also be the first choice for a 
researcher if the instrument is in an early stage of development. 
We outline the steps for conducting an EFA in the following 
sections. See Box 4 for a description of how to describe analyt-
ical considerations for an EFA in the methods section.

Selecting an Estimator. Just as with CFA, the first step in an 
EFA is selecting a statistical method to use to extract the vari-
ances from the data. The considerations for the selection of this 
estimator are similar to those for CFA (see Selecting an Estima-
tor). One of the most commonly used methods for extracting 
variance when conducting an EFA on ordinal data with slight 
nonnormality is principal axis factoring (Leandre et al., 2012). 
If the items in one’s instrument have fewer than five response 
options, WLS can be considered.

Factor Rotation. Factor rotation is a technical step to make the 
final output from the model easier to interpret (see Bandalos, 
2018, pp. 327–334, for more details). The main decision for the 
researcher to make here is whether the rotation should be 
orthogonal or oblique (Raykov and Marcoulides, 2008; Leandre 
et al., 2012; Bandalos, 2018). Orthogonal means that the fac-
tors are uncorrelated to one another in the model. Oblique 
allows the factors to correlate to one another. In educational 
studies, factors are likely to correlate to one another; thus 
oblique rotation should be chosen unless a strong hypothesis 
for uncorrelated factors exists (Leandre et al., 2012). Orthogo-
nal and oblique are actually families of rotations, so once the 
larger choice of family is made, a specific rotation method must 
be chosen. The specific rotation method within the oblique cat-
egory that is chosen does not generally have a strong effect on 
the results (Bandalos and Finney, 2010). However, the 
researcher should always provide information about which 
rotation method was used (Bandalos and Finney, 2010).

Determining the Number of Factors. After selecting the 
methods for estimation and rotation, researchers must deter-
mine how many factors to extract for EFA. This step is recognized 
as the greatest challenge of an EFA, and the issue has generated 
a large amount of debate (e.g., Cattell, 1966; Crawford et al., 

BOX 4. What to report in the methods of a publication for an EFA using the goal-endorsement example

Because the results from the initial CFA indicated that the data did not support a two-factor solution, we proceeded with an EFA to explore 
the factor structure of the data. The original sample was randomly divided into equal-sized parts, and EFA was performed on half of the 
sample (n = 398) to determine the dimensionality of the goal-endorsement scale and detect possible problematic items. This was followed 
by a CFA (n = 398) to confirm the result gained from the EFA. EFA and CFA were run using the R package lavaan (Rosseel, 2012).

Selecting an estimator for the EFA
Considering the ordinal and nonnormal nature of the data, a principal axis factor estimator was used to extract the variances from the 
data. Only cases with complete items were used in the EFA.

Factor rotation
Due to the fact that theory and the preceding CFA indicated that the different subscales are correlated, quartimin rotation (an oblique 
rotation) was chosen for the EFA.

Determining the number of factors
Visual inspection of the scree plot, parallel analysis (PA) based on eigenvalues from the principal components and factor analysis in 
combination with theoretical considerations were used to decide on the appropriate number of factors to retain. PA was implemented 
with the psych package (Revelle, 2017).
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BOX 5. How to interpret and report EFA output for publication 
using the goal-endorsement example

Initial EFAs
Parallel analysis based on eigenvalues from the principal compo-
nents and factor analysis indicated three components and five 
factors. The scree plot indicated an initial leveling out at four 
factors and a second leveling out at six factors.

We started by running a three-factor model and then increased 
the number of factors by one until we had run all models ranging 
from three to six factors. The pattern matrices were then exam-
ined in detail with a special focus on whether the factors made 
theoretical sense (see Table 2 for pattern matrices for the three-, 
four-, and five-factor models). The three-factor solution consisted 
of one factor with high factor loadings for the items representing 
communal goals (explaining 17% of the variance in the data). 
The items originally representing agentic goals were split into two 
factors. One factor included items that theoretically could be 
described as prestige (explaining 12% of the variance in the data) 
and the other items related to autonomy and competency 
(explaining 11% of the variance in the data). The total variance 
explained by the three-factor model was 41%. In the four-factor 
solution, the autonomy and competency items were split into two 
different factors. In the five-factor solution, three items from the 
original communal goals scale (working with people, connection 
to others, and intimacy) contributed most to the additional factor. 
In total, 48% of the variance was explained by the five-factor 
model. For a six-factor solution, the sixth factor included only one 
item with pattern loadings greater than 0.40, and thus a six-factor 
solution was deemed to be inappropriate.

In conclusion, the communal scale might represent one under-
lying construct as suggested by previous research or it might be 
split into two subscales represented by items related to 1) serving 
others and 2) connection. Our data did not support a single agen-
tic factor. Instead, these items seemed to fit on two or three sub-
scales: prestige, autonomy, and possibly competency. Because all 
the suggested solutions (three-, four-, and five-factor solutions) 
included a number of poorly fitting items, we decided to remove 
items and run a second set of EFAs before proceeding to the CFA.

Second round of EFAs
On the basis of the results from the initial EFAs, we first contin-
ued with a three-factor solution, removing items with low pat-
tern coefficients (<0.40; 10: success, 14: competition, and 22: 
intimacy, to begin with; Table 2). When these variables were 
removed in a stepwise manner, additional items now showed 
low pattern coefficients (<0.40) and/or low communalities in 
the new EFA solutions. The new items showing low pattern 
coefficients were items belonging to their own factors in the 
five-factor EFA (i.e., items representing competency and con-
nection). Not until all items from these two scales were removed 
was a stable three-factor solution achieved with pattern coeffi-
cients >0.40. Thus, to achieve a three-factor solution, including 
only items with pattern coefficients >0.40, we had to drop 30% 
of the items and, consequently, extensively narrow the content 
validity of the scale.

To further explore a five-factor solution, we decided, on the 
basis of the empirical results and the theoretical meaning of the 
items, to stepwise remove items 4 (mastery), 14 (competition), 
and 22 (intimacy). We used an inclusive pattern coefficient cut-
off (<0.40) for this initial round of validation, because we 
wanted to keep as many items as possible from the original 
scale. If some items continue to show pattern coefficients below 
0.5 over repeated data collections, researchers should recon-
sider whether these items should be kept in the scale. The new 
20-item five-factor solution resulted in theoretically the same 
factors as for the first five-factor EFA, but now all pattern coeffi-
cients but one were above 0.50 on the primary factor and below 
0.20 on the other factors (Table 3). In total, 52% of the variance 
in the data was explained.

In conclusion, the initial CFA, as well as the EFA analysis, indi-
cated that the two-dimensional scale previously suggested was 
not supported in our sample. The EFA analysis mainly indicated a 
three- or a five-factor solution. To achieve a good three-factor 
solution, we had to exclude 30% of the original items. The final 
three factors were labeled “prestige,” “autonomy,” and “service.” 
Both the empirical data and theoretical consideration suggested 
two additional factors: a competency factor and a connection 
factor. We continued with this five-factor solution, as it allowed 
us to retain more of the original items and made theoretical 
sense, as the five factors were just a further parsing of the original 
agentic and communal scales.

TABLE 3. Standardized pattern coefficients for the Diekman et al. 
(2010) goal-endorsement instrument from the second EFA for 
the five-factor solutionsa

1 2 3 4 5

1 Power 0.75
2 Recognition 0.60
3 Achievement 0.81
5 Self-promotion 0.56
6 Independence 0.65
7 Individualism 0.69
8 Status 0.76
9 Focus on the self 0.50
10 Success 0.55
11 Financial rewards 0.55
12 Self-direction 0.55
13 Demonstrating skills or 

competence
0.40

15 Helping others 0.84
16 Serving humanity 0.80
17 Serving community 0.80
18 Working with people 0.94
19 Connection with others 0.53
20 Attending to others 0.75
21 Caring for others 0.74
23 Spiritual rewards 0.50 0.20
aFor clarity, pattern coefficients <0.2 are not shown.

2010; Leandre et al., 2012). Commonly used methods are to 
retain all factors with an eigenvalue >1 or to use a scree plot. 
Eigenvalues are roughly a measure of the amount of information 
contained in a factor, so factors with higher eigenvalues are the 

most useful for understanding the data. A scree plot is a plot of 
eigenvalues versus number of factors. Scree plots allow research-
ers to visually estimate the number of factors that are informative 
by considering the shape of the plot (see the annotated output 
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BOX 6. How to interpret and report CFA output for publication using the goal-endorsement example, second CFA

Based on the results from the EFAs, a second CFA was specified using the five-factor model with 20 items (excluding 4: mastery, 10: 
competition, and 22: intimacy). The specified five-factor CFA demonstrated appropriate model fit (χ2 = 266, df = 160, p < 0.00, CFI = 
0.959, RMSEA = 0.046, and SRMR = 0.050). Factor loadings were close to or above 0.70 for all but three items (Figure 2), meaning 
that, for most items, around 50% of the variance in the items was explained (R2 ≈ 0.5) by the theorized factor. This means that the 
factors explained most of the items well. Factor correlations were highest between the service and connection factors (0.76) and the 
autonomy and competency (0.67) factors. The lowest factor correlation found was between the prestige and service factors (0.21). 
Coefficient alpha values for the subscales were 0.81, 0.77, 0.66, 0.87, and 0.77 for prestige, autonomy, competency, service, and con-
nection, respectively.

FIGURE 2. Results from the final five-factor CFA model. Survey items (for items descriptions see Table 3) are represented by squares 
and factors are represented by ovals. The numbers below the double-headed arrows represent correlations between the factors; the 
numbers by the one-directional arrows between the factors and the items represent standardized factor loadings. Small arrows 
indicate error terms. *, p < 0.01; p < 0.001 for all other estimates.

in the Supplemental Material, Section 2, for an example of a 
scree plot). These two methods are considered heuristic, and 
many researchers recommend also using parallel analysis (PA) 
or the minimum average partial correlation test to determine the 
appropriate number of factors (Ledesma and Valero-Mora, 
2007; Leandre et al., 2012; Tabachnick and Fidell, 2013). In 
addition, several statistics that mathematically analyze the 
shape of the scree plot have been developed in an effort to pro-
vide a nonvisual method of determining the number of factors 
(Ruscio and Roche, 2012; Raiche et al., 2013).

We recommend using a number of these indices, as well as 
theoretical considerations, to determine the number of factors 
to retain. The results of all of the various methods discussed 
provide plausible solutions that can all be explored to evaluate 
the best solution. When these indices are in agreement, this 
provides more evidence of a clear factor structure in the data. 
To make each factor interpretable, it is of outmost importance 
that the number and nature of factors retained make 
theoretical sense (see Box 5 for a discussion on how many 
factors to retain). Further, the intended use for the survey 
should also be considered. For example, say a researcher is 
interested in studying two distinct populations of students. If 
the empirical and theoretical evidence supports both a 
two-factor and a three- factor solution, but the three-factor 
solution provides a clearer distinction between two popula-
tions of interest, then the researcher might choose the 
three-factor solution (see Box 7).

Interpreting Output from EFA
The aim of EFA is to gain a better understanding of underlying 
patterns in the data, investigate dimensionality, and identify 
potentially problematic items. In addition to the results from 
parallel analysis or other methods used to estimate the number 
of factors, other informative measures include pattern coeffi-
cients and communalities. These outputs from an EFA will be 
discussed in this section. See Box 5 for an example of how to 
write up the output from an EFA.

Pattern Coefficients and Communalities. Pattern coeffi-
cients and communalities are parameters describing the 
relationship between the items and the factors. They help 
researchers understand the meaning of the factors and iden-
tify items that do not empirically appear to belong to their 
theorized factor.

Pattern coefficients closely correspond to factor loadings in 
CFA, and they are commonly the focal output from an EFA 
(Leandre et al., 2012). Pattern coefficients represent the impact 
each factor has on an item after controlling for the impact of all 
the other factors on that item. A high pattern coefficient sug-
gests that the item is well explained by a particular factor. How-
ever, as with CFA, there is no clear rule as to when an item has 
a pattern coefficient too low to be considered part of a particu-
lar factor. Guidelines for minimum pattern coefficient values 
range from 0.40 to 0.70. In other words, all items with pattern 
coefficients equal to or higher than the chosen cutoff value can 



CBE—Life Sciences Education • 18:rm1, Spring 2019 18:rm1, 15

Factor Analysis

be considered “good” items and should be kept in the survey 
(Matsunaga, 2010).

It is also important to consider the magnitude of any 
cross-loadings. Cross-loading describes the situation in which 
an item seems to be influenced by more than one factor in the 
model. Cross-loading is indicated when an item has high pat-
tern coefficients for multiple factors. Using that item is prob-
lematic when creating a summed/mean score for a factor, as 
responses to that item are not uniquely driven by its hypothe-
sized factor, but instead by additional measured factors. 
Cross-loadings higher than 0.20 or 0.30 are usually considered 
to be problematic (Matsunaga, 2010), especially if the item 
does not have a particularly strong loading on a focal factor.

Communality represents the percentage of the variance in 
responses on an item accounted for by all factors in the pro-
posed model. Communalities are similar to R2 in CFA (see Fac-
tor Loadings). However, in CFA, the variance in an item is only 
explained by one factor, while in EFA, the variance in one item 
can be explained by several factors. Low communality for an 
item means that the variance in the item is not well explained 

by any part of the model, and thus that item could be a subject 
for elimination.

We emphasize that, even if pattern coefficients or commu-
nalities indicate that an item might be subject for elimination, it 
is important to consider the alignment between the item and 
hypothesized construct before actually eliminating the item. 
The items in a scale are presumably chosen for some theoretical 
reason, and eliminating any items can cause a decrease in con-
tent validity (Bandalos and Finney, 2010). If any item is 
removed, the EFA should be rerun to ensure that the original 
factor structure persists. This can be done on the same data set, 
as EFA is exploratory in nature.

Interpreting the Final Solution. Once the factors and the items 
make empirical and theoretical sense, the factor solution can be 
interpreted, and suitable names for the factors should be cho-
sen (see Box 5 for a discussion of the output from an EFA). 
Important sources of information for this include: the amount 
variance explained by the whole solution and the factors, factor 
correlations, pattern coefficients, communality values, and the 

TABLE 4. Proposed five-factor solution. Items within each factor are ordered by highest to lowest factor loadings

Service Prestige Autonomy Connection Competency

Helping others Status Individualism Working with people Achievement
Serving humanity Power Independence Connection with others Success
Serving community Recognition Self-direction Competence
Attending to others Self-promotion Focus on the self
Caring for others Financial rewards
Spiritual rewards

BOX 7. Writing conclusions from factor analysis for publication using the goal-endorsement example

Conclusions
The results from the factor analysis did not confirm the proposed two-factor goal-endorsement scale for use with college STEM majors. 
Instead, our results indicated five subscales: prestige, autonomy, competency, service, and connection (Table 4). The five-factor solu-
tion aligned with Diekman et al.’s (2010) original two-factor scale, because communal items did not mix with agentic items. Our sample 
did, however, allows us to further refine the solution for the original two scales. Finer parsing of the agentic and communal scales may 
help identify important differences between students and allow researchers to better understand factors contributing to retention in 
STEM majors. In addition, with items related to autonomy and competency moved to their own scales, the refined prestige scale focus-
ing on factors like power, recognition, and status may be a more direct contrast to the service scale. Additional evidence in support of 
this refinement include that the five-factor solution better distinguishes the service scale and the prestige scale (factor correlation = 
0.21) than the two-factor solution (factor correlation between agentic and communal factors = 0.35). Further, retention may be signifi-
cantly correlated to prestige but not to autonomy. Alternatively, differences between genders may exist for the service scale but not the 
connection scale.

On the basis of the result of this factor analysis, we recommend using the five-factor solution for interpreting the results of the current 
data set, but interpret the connection and competency scales with some caution, for reasons summarized in the next section.

Limitations and future studies
The proposed five-factor solution needs additional work. In particular, both the competency and connection scales need further devel-
opment. Only two items represented connection, and this is not adequate to represent the full aspect of this construct, especially to 
make it clearly distinct from the construct of service. The competency scale included only three items, coefficient alpha was 0.66, and 
factor loadings for the scale were low (<0.40) for demonstrating skills or competency.

Another limitation of this study is that the sample consisted of 70% women, an overrepresentation of women for a typical under-
graduate STEM population. Further studies should confirm whether the suggested dimensionality holds in a more representative sam-
ple. Future studies should also test whether the instrument has the same structure with STEM students from different backgrounds (i.e., 
measurement invariance should be investigated). The work presented here only establishes the dimensionality of the survey. We rec-
ommend the collection of other types of validity evidence, such as evidence based on content or relationships to other variables, to 
further strengthen our confidence that the scores from this survey represent STEM students’ goal orientation.
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underlying theory. Because the names of the factors will be 
used to communicate the results, it is crucial that the names 
reflect the meaning of the underlying items. Because the item 
responses are manifestations of the constructs, different sets of 
items representing a construct will, accordingly, lead to slightly 
different nuanced interpretations of that construct. Once a 
plausible solution has been identified by an EFA, it is important 
to note that stronger support for the solution can be obtained 
by testing the hypothesized model using a CFA on a new 
sample.

CONCLUDING REMARKS
In this article, we have discussed the need for understanding 
the validity evidence available for an existing survey before its 
use in discipline-based educational research. We emphasized 
that validity is not a property of the measurement instrument 
itself but is instead a property of the instrument’s use. Thus, 
each time a researcher decides to use an instrument, they have 
to consider to what degree evidence and theory support the 
intended interpretations and use of the instrument. A researcher 
should always review the different kinds of validity evidence 
described by AERA, APA, and NCME (2014; Table 1) before 
using an instrument and should identify the evidence they need 
to feel confident when employing the instrument for an 
intended use. When using several related items to measure an 
underlying construct, one important validity aspect to consider 
is whether a set of items can confidently be combined to repre-
sent that construct. In this paper, we have shown how factor 
analysis (both exploratory and confirmatory) can be used to 
investigate that.

We recognize that the information presented herein may 
seem daunting and a potential barrier to carrying out import-
ant, substantive, educational research. We appreciate this sen-
timent and have experienced those fears ourselves, but we feel 
that properly understanding procedures for vetting instruments 
before their use is essential for robust and replicable research. 
To reiterate, at issue here is the confidence and trust one can 
have in one’s own research, both after its initial completion and 
in future studies that will rely on the replicability of results. 
Again, we can use an analogy for the measurement of unob-
servable phenomena: one would not expect an uncalibrated 
and calibrated scale to produce the same values for the weight 
of a rock. This does not mean that the uncalibrated scale will 
necessarily produce invalid measurements, only that one’s con-
fidence in its ability to do so should be tempered by the knowl-
edge that it has not yet been calibrated. Research conducted 
using uncalibrated or biased instruments, regardless of disci-
pline, is at risk of inferring conclusions that are incorrect. The 
researcher may make the appropriate inferences given the val-
ues provided by the instrument, but if the instrument itself is 
invalid for the proposed use, then the inferences drawn are also 
invalid. Our aim in presenting these methods is to strengthen 
the research conducted in biology education and continue to 
improve the quality of biology education in higher education.
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