CAFE-S - Fonctions élémentaires

Axel CAULIER, Pedro GIESTEIRA, Marie YAZIJI

Mercredi 13 septembre 2023

FACULTÉ DES SCIENCES Section de mathématiques

Sommaire

- Généralités sur les fonctions
 - Premières définitions
 - Représentation graphique
 - Variations
 - Extrema
 - Opérations et composition
 - Parité
 - Exercices et correction I

Premières définitions

Définition (Fonction)

Une fonction f d'un ensemble A à un ensemble B est un procédé permettant d'associer chaque élément de A à au plus un élément de B.

Premières définitions

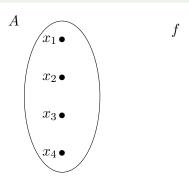
Définition (Fonction)

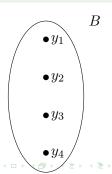
Une fonction f d'un ensemble A à un ensemble B est un procédé permettant d'associer chaque élément de A à au plus un élément de B.

Terminologie (Domaine de départ)

Une fonction f d'un ensemble A à un ensemble B est un procédé permettant d'associer chaque élément de A à au plus un élément de B.

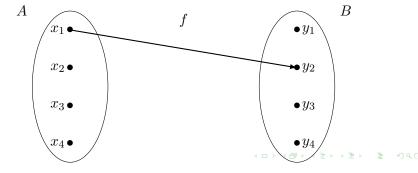
Terminologie (Domaine de départ)





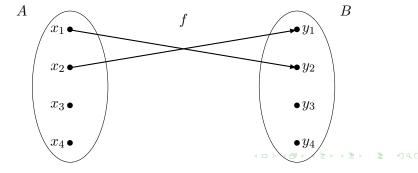
Une fonction f d'un ensemble A à un ensemble B est un procédé permettant d'associer chaque élément de A à au plus un élément de B.

Terminologie (Domaine de départ)



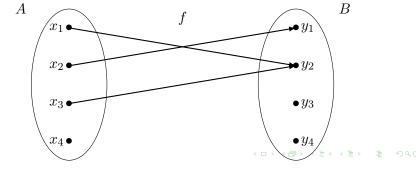
Une fonction f d'un ensemble A à un ensemble B est un procédé permettant d'associer chaque élément de A à au plus un élément de B.

Terminologie (Domaine de départ)



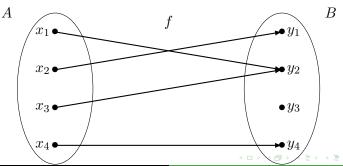
Une fonction f d'un ensemble A à un ensemble B est un procédé permettant d'associer chaque élément de A à au plus un élément de B.

Terminologie (Domaine de départ)



Une fonction f d'un ensemble A à un ensemble B est un procédé permettant d'associer chaque élément de A à au plus un élément de B.

Terminologie (Domaine de départ)



lmage et préimage

Définition (Image et préimage)

Soit f une fonction de A dans B.

Si f associe un élément $x \in A$ à un élément $y \in B$, alors nous écrivons f(x) = y.

Nous disons que y est l'image de x par f, et x est une **préimage** de y par f.

En somme:

Notation (Fonction)

Une fonction f de A dans B est notée

$$f: \begin{array}{ccc} A & \longrightarrow & B \\ x & \longmapsto & f(x) \end{array}.$$

En somme:

Notation (Fonction)

Une fonction f de A dans B est notée

$$f: \begin{array}{ccc} A & \longrightarrow & B \\ x & \longmapsto & f(x) \end{array}.$$

Remarque

Nous travaillerons, dans ce cours, avec $A, B \subseteq \mathbb{R}$.

Domaine de définition et ensemble image

Définition (Domaine de définition)

Le domaine de définition D_f d'une fonction f est l'ensemble des nombres réels dont l'image par f est bien définie.

Domaine de définition et ensemble image

Définition (Domaine de définition)

Le domaine de définition D_f d'une fonction f est l'ensemble des nombres réels dont l'image par f est bien définie.

Remarque

Par "bien définie", nous entendons qu'il ne faudra pas diviser par 0, considérer la racine paire de réels négatifs, etc.

Domaine de définition et ensemble image

Définition (Domaine de définition)

Le domaine de définition D_f d'une fonction f est l'ensemble des nombres réels dont l'image par f est bien définie.

Remarque

Par "bien définie", nous entendons qu'il ne faudra pas diviser par 0, considérer la racine paire de réels négatifs, etc.

Définition (Ensemble image)

Soit f une fonction. L'ensemble image de f est l'ensemble de toutes les images par f:

$$\operatorname{Im}(f) = \{ f(x) \mid x \in D_f \} .$$

Ordonnée à l'origine et zéros

Définition (Ordonnée à l'origine)

Soit f une fonction.

L'ordonnée à l'origine de f est l'image de 0 par f :

Premières définitions

Ordonnée à l'origine et zéros

Définition (Ordonnée à l'origine)

Soit f une fonction.

L'ordonnée à l'origine de f est l'image de 0 par f:f(0).

Ordonnée à l'origine et zéros

Définition (Ordonnée à l'origine)

Soit f une fonction.

L'ordonnée à l'origine de f est l'image de 0 par f : f(0).

Définition (Ensemble des zéros)

Soit f une fonction.

L'ensemble des zéros de f, noté Z_f , est l'ensemble des nombres réels dans le domaine de définition de f dont l'image par f vaut 0 :

Ordonnée à l'origine et zéros

Définition (Ordonnée à l'origine)

Soit f une fonction.

L'ordonnée à l'origine de f est l'image de 0 par f:f(0).

Définition (Ensemble des zéros)

Soit f une fonction.

L'ensemble des zéros de f, noté Z_f , est l'ensemble des nombres réels dans le domaine de définition de f dont l'image par f vaut 0:

$$Z_f = \{ x \in D_f \mid f(x) = 0 \}.$$

Courbe représentative

Définition (Courbe représentative)

La courbe représentative \mathcal{C}_f d'une fonction f, dans un repère du plan, est la courbe formée par l'ensemble des points de coordonnées (x,f(x)), où $x\in D_f$.

Courbe représentative

Définition (Courbe représentative)

La courbe représentative \mathcal{C}_f d'une fonction f, dans un repère du plan, est la courbe formée par l'ensemble des points de coordonnées (x,f(x)), où $x\in D_f$.

Autrement dit, les abscisses désigneront les préimages et les ordonnées seront les images correspondantes.

Exemple 1 :
$$f(x) = x + 1$$

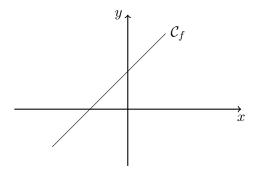


Figure – Courbe représentative de la fonction f(x) = x + 1.

Exemple 2 : $g(x) = x^2$

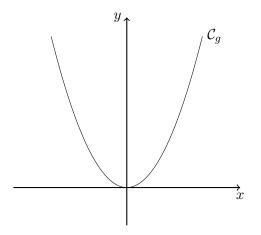


Figure – Courbe représentative de la fonction $g(x) = x^2$.

Représentation graphique

Exemple 3 :
$$h(x) = \sin(x^2 + 1)$$

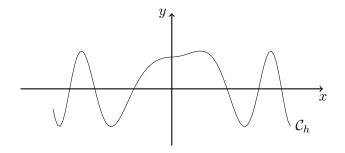


Figure – Courbe représentative de la fonction $h(x) = \sin(x^2 + 1)$.

Méthode

Méthode

Afin de tracer la courbe représentative d'une fonction, il nous faut :

① Déterminer, si nécessaire, la famille (polynomiale, affine, logarithme, exponentielle, ...) à laquelle appartient la fonction, afin d'en anticiper l'allure.

Méthode

- Déterminer, si nécessaire, la famille (polynomiale, affine, logarithme, exponentielle, ...) à laquelle appartient la fonction, afin d'en anticiper l'allure.
- Oéterminer une graduation adéquate des axes.

Méthode

- Déterminer, si nécessaire, la famille (polynomiale, affine, logarithme, exponentielle, ...) à laquelle appartient la fonction, afin d'en anticiper l'allure.
- 2 Déterminer une graduation adéquate des axes.
- Trouver les coordonnées d'un certain nombre de points judicieux (des extrema, des valeurs asymptotiques, ...)

Méthode

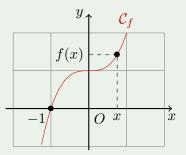
- ① Déterminer, si nécessaire, la famille (polynomiale, affine, logarithme, exponentielle, ...) à laquelle appartient la fonction, afin d'en anticiper l'allure.
- ② Déterminer une graduation adéquate des axes.
- Trouver les coordonnées d'un certain nombre de points judicieux (des extrema, des valeurs asymptotiques, ...)
- O Placer les points dans le repère et les relier lorsque cela est pertinent.

Lecture graphique

La représentation graphique d'une fonction permet de lire la valeur de l'image de x, pour tout $x \in D_f$.

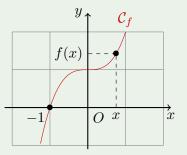
Lecture graphique

Exemple



Lecture graphique

Exemple



Grâce à la courbe représentative ci-dessus, nous pouvons lire l'image de tout point x par la fonction f. En particulier, nous parvenons à lire que l'image de -1 par f vaut 0 et l'image de 0 vaut 1.

Monotonie

Définitions (Croissance et décroissance)

Soit f une fonction définie sur un domaine A.

L_{Variations} Monotonie

Définitions (Croissance et décroissance)

Soit f une fonction définie sur un domaine A.

① f est **croissante** sur A si, pour tous $x \le y$ dans A : $f(x) \le f(y)$.

Monotonie

Définitions (Croissance et décroissance)

Soit f une fonction définie sur un domaine A.

- $\textbf{ } f \text{ est } \textbf{croissante } \text{sur } A \text{ si, pour tous } x \leq y \text{ dans } A : \\ f(x) \leq f(y).$
- ② f est **décroissante** sur A si, pour tous $x \le y$ dans A: $f(x) \ge f(y)$.

Monotonie

Définitions (Croissance et décroissance)

Soit f une fonction définie sur un domaine A.

- ① f est **croissante** sur A si, pour tous $x \leq y$ dans A : $f(x) \leq f(y)$.
- ② f est décroissante sur A si, pour tous $x \leq y$ dans A : $f(x) \geq f(y)$.
- \bullet f est monotone sur A si f est croissante ou décroissante sur A.

Monotonie stricte

Définitions (Croissance et décroissance strictes)

Soit f une fonction définie sur un domaine A.

Monotonie stricte

Définitions (Croissance et décroissance strictes)

Soit f une fonction définie sur un domaine A.

• f est strictement croissante sur A si, pour tous x < y dans A: f(x) < f(y).

└─ Variations

Monotonie stricte

Définitions (Croissance et décroissance strictes)

Soit f une fonction définie sur un domaine A.

- f est strictement croissante sur A si, pour tous x < y dans A: f(x) < f(y).
- ② f est strictement décroissante sur A si, pour tous x < y dans A: f(x) > f(y).

Monotonie stricte

Définitions (Croissance et décroissance strictes)

Soit f une fonction définie sur un domaine A.

- f est strictement croissante sur A si, pour tous x < y dans A: f(x) < f(y).
- ② f est strictement décroissante sur A si, pour tous x < y dans A: f(x) > f(y).

Remarque

Remarque

Une fonction f n'est pas toujours identiquement monotone : elle peut être croissante, puis décroissante par exemple.

Définitions (Minimum, Maximum, Extremum)

Considérons une fonction $f:I\to\mathbb{R}$, définie sur un intervalle I, et soit $a\in I$.

Définitions (Minimum, Maximum, Extremum)

Considérons une fonction $f:I\to\mathbb{R}$, définie sur un intervalle I, et soit $a\in I$.

Définitions (Minimum, Maximum, Extremum)

Considérons une fonction $f:I\to\mathbb{R}$, définie sur un intervalle I, et soit $a\in I$.

- ① f admet un **minimum (global)** en $a \in I$ si, pour tout $x \in I$: $f(a) \leq f(x)$.
- ② f admet un \max imum (global) en $a \in I$ si, pour tout $x \in I$: $f(a) \geq f(x)$

Définitions (Minimum, Maximum, Extremum)

Considérons une fonction $f:I\to\mathbb{R}$, définie sur un intervalle I, et soit $a\in I$.

- **1** f admet un **minimum (global)** en $a \in I$ si, pour tout $x \in I$: $f(a) \leq f(x)$.
- ② f admet un **maximum (global)** en $a \in I$ si, pour tout $x \in I$: $f(a) \ge f(x)$
- 3 a est un **extremum** (global) de f si a est un minimum (global) ou un maximum (global).

Exemple : polynôme de degré 2

Exemple

Dans le cas d'un polynôme quadratique $ax^2 + bx + c$, $a \neq 0$, les coordonnées de l'extremum sont $\left(-\frac{b}{2a}\,,\,\frac{-b^2+4ac}{4a}\right)$.

Définition

Considérons une fonction $f:I\to\mathbb{R}$, définie sur un intervalle I, et soit $a\in I$.

f admet un **extremum local** en a s'il existe un intervalle ouvert J contenant a tel que a soit un extremum de f sur $J\cap I$.

1
$$(f+g)(x) := f(x) + g(x)$$

1
$$(f+g)(x) := f(x) + g(x)$$

②
$$(f-g)(x) := f(x) - g(x)$$

1
$$(f+g)(x) := f(x) + g(x)$$

②
$$(f-g)(x) := f(x) - g(x)$$

3
$$(fg)(x) := f(x)g(x)$$

$$(f+g)(x) := f(x) + g(x)$$

②
$$(f-g)(x) := f(x) - g(x)$$

$$(fg)(x) := f(x)g(x)$$

La cinquième opération

Outre ces quatre opérations, il nous est possible de définir une cinquième opération : la composition.

Définition de la composition

Définition (Composition)

Soient $A,\ B$ et C trois ensembles, et soient $f:A\to B$ et $g:B\to C$ deux fonctions.

La composée de f par g, notée $g \circ f$, est définie par :

$$\forall x \in A : (g \circ f)(x) := g(f(x)).$$

Définition de la composition

Définition (Composition)

Soient $A,\ B$ et C trois ensembles, et soient $f:A\to B$ et $g:B\to C$ deux fonctions.

La **composée de** f **par** g, notée $g \circ f$, est définie par :

$$\forall x \in A : (g \circ f)(x) := g(f(x)).$$

Concrètement, cela signifie que nous regardons l'image de x par f que nous pouvons noter y - puis considérons l'image de y par g.

Domaines de la composition

Remarque

Si
$$f:A \to B$$
 et $g:B \to C$, alors :

$$g\circ f:A\longrightarrow C.$$

Exemple

Considérons les fonctions

$$f: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & 2x+5 \end{array}$$

$$g: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x^3 \end{array}.$$

Exemple

Considérons les fonctions

$$f: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & 2x+5 \end{array} \qquad g: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x^3 \end{array}.$$

$$(g \circ f)(x)$$

Exemple

Considérons les fonctions

$$f: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & 2x+5 \end{array} \qquad g: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x^3 \end{array}.$$

$$(g \circ f)(x) = g(f(x))$$

Exemple

Considérons les fonctions

$$f: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & 2x+5 \end{array} \qquad g: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x^3 \end{array}.$$

$$(g \circ f)(x) = g(f(x))$$
$$= g(2x+5)$$

Exemple

Considérons les fonctions

$$f: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & 2x+5 \end{array} \qquad g: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x^3 \end{array}.$$

$$(g \circ f)(x) = g(f(x))$$
$$= g(2x+5)$$
$$= (2x+5)^3$$

Exemple (suite)

$$(f \circ g)(x)$$

Exemple (suite)

$$(f \circ g)(x) = f(g(x))$$

Exemple (suite)

$$(f \circ g)(x) = f(g(x))$$
$$= f(x^3)$$

Exemple (suite)

$$(f \circ g)(x) = f(g(x))$$
$$= f(x^3)$$
$$= 2x^3 + 5$$

Commutativité de la composition

Il s'en suit que :

Remarque

En général, la composition n'est pas une opération commutative :

$$g \circ f \neq f \circ g$$
!

Associativité de la composition

En revanche:

Remarque

La composition de fonctions est associative :

Pour trois fonctions f, g et h, pour lesquelles les composées ci-dessous sont définies :

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

Contre-exemple

Contre-exemple

Considérons les fonctions

$$f: \begin{array}{ccc} \mathbb{R}_+ & \to & \mathbb{R}_- \\ x & \mapsto & -x \end{array}$$

$$g: \begin{array}{ccc} \mathbb{R}_+ & \to & \mathbb{R} \\ x & \mapsto & \sqrt{x} - 2 \end{array}.$$

Contre-exemple

Contre-exemple

Considérons les fonctions

$$f: \begin{array}{ccc} \mathbb{R}_+ & \to & \mathbb{R}_- \\ x & \mapsto & -x \end{array} \qquad g: \begin{array}{ccc} \mathbb{R}_+ & \to & \mathbb{R} \\ x & \mapsto & \sqrt{x} - 2 \end{array}.$$

f et g ne sont pas compatibles : $f\circ g$ et $g\circ f$ n'ont pas de sens!

Contre-exemple

Contre-exemple

Considérons les fonctions

$$f: \begin{array}{cccc} \mathbb{R}_+ & \to & \mathbb{R}_- \\ x & \mapsto & -x \end{array} \qquad g: \begin{array}{cccc} \mathbb{R}_+ & \to & \mathbb{R} \\ x & \mapsto & \sqrt{x} - 2 \end{array}.$$

f et g ne sont pas compatibles : $f\circ g$ et $g\circ f$ n'ont pas de sens! En effet, $\sqrt{x}-2\in\mathbb{R}$, pas forcément à \mathbb{R}_+ et $-x\in\mathbb{R}_-$, donc $\sqrt{-x}$ n'existe pas...

Remarque indispensable

Remarque

Nous tirons, du contre-exemple précédent, que les **domaines de départ et d'arrivée** de fonctions que nous souhaitons composer sont **importants**!

Composition et variation

Proposition

Soient f et g deux fonctions compatibles pour la composition $g \circ f$.

Composition et variation

Proposition

Soient f et g deux fonctions compatibles pour la composition $g \circ f$. Si f et g ont même sens de variation, alors $g \circ f$ est strictement croissante.

Composition et variation

Proposition

Soient f et g deux fonctions compatibles pour la composition $g \circ f$. Si f et g ont même sens de variation, alors $g \circ f$ est strictement croissante.

Le cas contraire, $g \circ f$ est strictement décroissante.

Distributivité de la composition sur les quatre opérations

Remarque

Notons \star une des opérations $\{+, -, \cdot, /\}$.

Distributivité de la composition sur les quatre opérations

Remarque

Notons \star une des opérations $\{+, -, \cdot, /\}$.

La composition n'est généralement pas distributive sur ★ :

Distributivité de la composition sur les quatre opérations

Remarque

Notons \star une des opérations $\{+, -, \cdot, /\}$.

La composition n'est généralement pas distributive sur \star :

Pour trois fonctions f, g et h pour lesquelles les opérations ci-dessous sont compatibles :

$$h \circ (g \star f) \neq (h \circ g) \star (h \circ f).$$

Définitions de fonctions paire et impaire

Définition (Fonction paire)

Soit $f: A \to B$ une fonction.

f est une fonction paire si, pour tout $x \in A$, f(-x) = f(x).

Définitions de fonctions paire et impaire

Définition (Fonction paire)

Soit $f: A \rightarrow B$ une fonction.

f est une fonction paire si, pour tout $x \in A$, f(-x) = f(x).

Définition (Fonction impaire)

Soit $f:A\to B$ une fonction.

f est une fonction impaire si, pour tout $x \in A$, f(-x) = -f(x).

Déterminer la parité d'une fonction

Méthode

Afin de déterminer si une fonction f est paire ou impaire, il suffit de regarder f(-x) et de regarder si nous retombons sur f(x) ou -f(x).

Remarque

En complément à la méthode exposée précédemment

Remarque

Il est tout à fait possible de partir de f(-x) et de ne pas tomber sur f(x) ou -f(x).

En effet, une fonction n'est pas "soit paire", "soit impaire" : il existe des fonctions qui sont ni l'un, ni l'autre.

Exemple 1 :
$$h(x) = x^3 + x$$

$$h(-x)$$

Exemple 1 :
$$h(x) = x^3 + x$$

$$h(-x) = (-x)^3 + (-x)$$

Exemple 1 :
$$h(x) = x^3 + x$$

$$h(-x) = (-x)^3 + (-x)$$

= -x³ - x

Exemple 1 :
$$h(x) = x^3 + x$$

$$h(-x) = (-x)^3 + (-x)$$
$$= -x^3 - x$$
$$= -(x^3 + x)$$

Exemple 1 :
$$h(x) = x^3 + x$$

$$h(-x) = (-x)^3 + (-x)$$
$$= -x^3 - x$$
$$= -(x^3 + x)$$
$$= -h(x)$$

Exemple 1 :
$$h(x) = x^3 + x$$

$$h(-x) = (-x)^3 + (-x)$$
$$= -x^3 - x$$
$$= -(x^3 + x)$$
$$= -h(x)$$

Donc, h est une fonction impaire.

Exemple 2 :
$$g(x) = x^2 + 1$$

$$g(-x)$$

Exemple 2 :
$$g(x) = x^2 + 1$$

$$g(-x) = (-x)^2 + 1$$

Exemple 2 :
$$g(x) = x^2 + 1$$

$$g(-x) = (-x)^2 + 1$$
$$= x^2 + 1$$

Exemple 2 :
$$g(x) = x^2 + 1$$

$$g(-x) = (-x)^2 + 1$$
$$= x^2 + 1$$
$$= g(x)$$

Exemple 2 :
$$g(x) = x^2 + 1$$

$$g(-x) = (-x)^2 + 1$$
$$= x^2 + 1$$
$$= g(x)$$

Ainsi, g est une fonction paire.

Exemple 3 :
$$f(x) = 2x + 3$$

$$f(-x)$$

Exemple 3 :
$$f(x) = 2x + 3$$

$$f(-x) = 2(-x) + 3$$

Exemple 3 :
$$f(x) = 2x + 3$$

$$f(-x) = 2(-x) + 3$$
$$= -2x + 3$$

Exemple 3 :
$$f(x) = 2x + 3$$

$$f(-x) = 2(-x) + 3$$

= -2x + 3 \neq f(x)

Exemple 3 :
$$f(x) = 2x + 3$$

$$f(-x) = 2(-x) + 3$$

= -2x + 3 \neq f(x), -f(x).

Exemple 3 :
$$f(x) = 2x + 3$$

$$f(-x) = 2(-x) + 3$$

= -2x + 3 \neq f(x), -f(x).

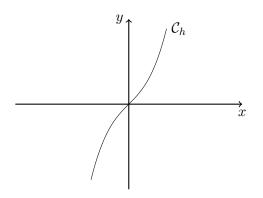
Nous en concluons que f n'est ni paire, ni impaire.

Représentation graphique et parité

Remarque

La courbe représentative d'une fonction impaire est symétrique par rapport à l'origine du repère.

Exemple 1 :
$$h(x) = x^3 + x$$

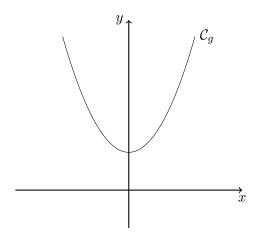


Représentation graphique et parité

Remarque

La courbe représentative d'une fonction paire est symétrique par rapport à l'axe des ordonnées.

Exemple 2 : $g(x) = \overline{x^2 + 1}$



Deux remarques

Remarques

• Toute fonction constante est paire.

Deux remarques

Remarques

- Toute fonction constante est paire.
- 2 La seule fonction à la fois paire et impaire est la fonction identiquement nulle.

La composition et la parité

Proposition

La composée de deux fonctions impaires est impaire.

La composition et la parité

Proposition

La composée de deux fonctions impaires est impaire.

Proposition

Si f est impaire et g est paire, alors la composée $g \circ f$ est paire.

La composition et la parité

Proposition

La composée de deux fonctions impaires est impaire.

Proposition

Si f est impaire et g est paire, alors la composée $g \circ f$ est paire.

Proposition

Si f est paire et g est quelconque, alors la composée $g \circ f$ est paire.

Exercices I

Exercice

• Composer les fonctions suivantes, lorsque cela est possible :

② Donner le domaine de définition de la fonction $((2g-3k)\cdot g)$ et calculer $((2g-3k)\cdot g)$ (1).

Exercice

Déterminer la parité des fonctions g et k ci-dessus.

Correction |

Exposants rationnels et irrationnels

Nous allons maintenant nous intéresser à des fonctions de la forme $x\mapsto a^x$ où a>0 en considérant les cas $x\in\mathbb{Q}$ (rationnels) et $x\in\mathbb{R}\setminus\mathbb{Q}$ (irrationnels).

- Si $x \in \mathbb{Q}$, alors on peut écrire x = n/m avec $n \in \mathbb{Z}$ et $m \in \mathbb{N}^*$. Ainsi, $a^x = a^{n/m} = (\sqrt[m]{a})^n$.
- Si $x \in \mathbb{R} \setminus \mathbb{Q}$, on peut prendre une suite de nombres rationnels x_1, x_2, x_3, \ldots qui approchent x et définir a^x comme la valeur limite de $a^{x_1}, a^{x_2}, a^{x_3}, \ldots$ Par exemple, on peut approcher 2^{π} de la manière suivante :

x	2^x	x	2^x
3.1	8.574187700	3.1415	8.824411082
3.14	8.815240927	3.14159	8.824961595
3.141	8.821353305	π	8.824977827

Fonctions exponentielles et logarithmes

Exponentielle de base a

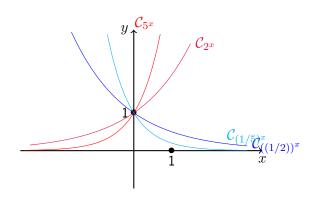
Définition (Exponentielle de base a)

Soit $a \in \mathbb{R}_+^*$, $a \neq 1$ (i.e. 0 < a < 1 ou a > 1).

La fonction $x \mapsto a^x$, définie sur \mathbb{R} , se nomme la fonction exponentielle de base \mathbf{a} .

Fonctions exponentielles et logarithmes

Courbes représentatives de 2^x , 5^x , $\left(\frac{1}{2}\right)^x$ et $\left(\frac{1}{5}\right)^x$



Variation des fonctions exponentielles

Au vu de la figure précédente, il y a deux types de fonctions exponentielles.

Terminologie	Définition	
Fonction exponentielle	$f: \mathbb{R} \to \mathbb{R}_+^*, \\ x \mapsto a^x$	
de base a	$x \mapsto a^x$	
Si $a > 1$	Si $0 < a < 1$	
$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Propriétés algébriques des fonctions exponentielles

Proposition (★)

Pour tous $a, b \in \mathbb{R}_+^* \setminus \{1\}$ et $x, y \in \mathbb{R}$, nous avons :

$$a^0 = 1$$
 et $a^1 = a$

$$a^{x+y} = a^x a^y$$

$$a^{x-y} = \frac{a^x}{a^y}$$

$$a^{-x} = \frac{1}{a^x}$$

$$a^{xy} = (a^x)^y$$

$$a^x = a^y \iff x = y$$

$$a^x > 0$$

Exemple et autres propriétés des fonctions exponentielles

Exemple

Les propriétés ★ permettent de résoudre certaines équations exponentielles. Par exemple,

$$3^{5x-8} = 9^{x+2}$$

$$\Leftrightarrow 3^{5x-8} = 3^{2x+4} \quad (\bigstar 5)$$

$$\Leftrightarrow 5x-8 = 2x+4 \quad (\bigstar 7)$$

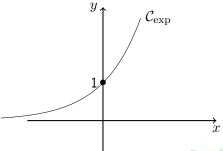
$$\Leftrightarrow x = 4$$

Fonction exponentielle naturelle

Le nombre d'Euler est donné par

$$\begin{array}{ll} e &= 1 + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} + \cdots \\ &= 2.718281828459045235360287471352662497757247... \end{array}$$

L'exponentielle de base e est souvent notée $\exp(x) =: e^x$.



Propriétés algébriques de exp

Proposition

Pour tous $x, y \in \mathbb{R}$:

$$\exp(x+y) = \exp(x)\exp(y).$$

Corollaire

Pour tous $x,y \in \mathbb{R}$, nous avons :

$$\bullet \exp(-x) = \frac{1}{\exp(x)}$$

Fonctions exponentielles: exercices

Exercice

- $4^x \cdot (1/2)^{3-2x} = 8 \cdot (2^x)^2.$
- $9^{2x} \cdot (1/3)^{x+2} = 27 \cdot (3^x)^{-2}.$

Exercice

Trouver une base $a \in \mathbb{R} +^* \setminus \{1\}$ telle que $(2,5) \in \mathcal{C}_{a^x}$.

Fonctions exponentielles: corrections

Exercice

- $4^x \cdot (1/2)^{3-2x} = 8 \cdot (2^x)^2 \Leftrightarrow x = 3/2.$
- $9^{2x} \cdot (1/3)^{x+2} = 27 \cdot (3^x)^{-2} \Leftrightarrow x = 1.$

Exercice

Trouver une base $a \in \mathbb{R}$ telle que $(2,5) \in \mathcal{C}_{a^x}$. $\Leftrightarrow a = \sqrt{5}$.

Fonction logarithmique de base a: définition

Soit $a\in]0,+\infty[\setminus\{1\}]$ et soit $f:\mathbb{R}\to\mathbb{R}_+^*,\ x\mapsto a^x$ la fonction exponentielle de base a. Comme $f(x)=f(y)\iff x=y$ ($\bigstar 7$) pour tout $x,y\in\mathbb{R}$ et que $f(\mathbb{R})=\mathbb{R}_+^*,\ f$ a un inverse défini sur \mathbb{R}_+^* . Cette fonction est le logarithme de base a:

Définition (Fonction logarithmique de base a)

Soient $a\in]0,+\infty[\setminus\{1\},\ y\in\mathbb{R}$ et x>0. Le logarithme de base a de x est défini par

$$y = \log_a(x) \iff x = a^y$$
.

Équations et remarque

Exemple

Forme logarithmique Forme exponentielle

$$\log_5(u) = 2$$
$$\log_b 8 = 3$$
$$w = \log_4(2t + 3)$$

$$5^2 = u$$
$$b^3 = 8$$

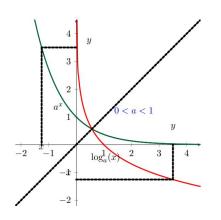
$$4^w = 2t + 3$$

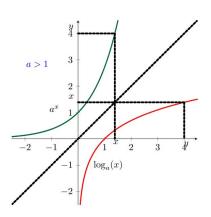
Remarque

Il découle également de la définition de \log_a que :

- $a^{\log_a(x)} = x$

Fonction logarithmique de base a: définition

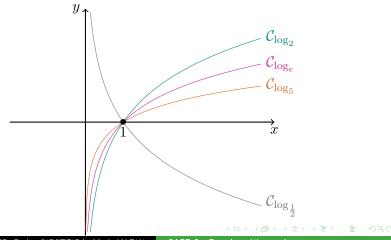




Quelques familles de fonctions

Fonctions exponentielles et logarithmes

Courbes représentatives de $\log_{\frac{1}{2}}(x)$, $\log_2(x)$, $\log_e(x)$ et $\log_5(x)$



Fonctions exponentielles et logarithmes

Variation de \log_a

Remarque

La variation de \log_a dépend de la valeur de a :

- Si 0 < a < 1, alors \log_a est décroissante sur \mathbb{R} .
- ② Si a > 1, alors \log_a est croissante sur \mathbb{R} .

Propriétés algébriques de \log_a

Proposition

Pour tous $a \in \mathbb{R}_+^* \setminus \{1\}$, $x, y \in \mathbb{R}_+^*$ et $n \in \mathbb{R}$, nous avons :

1
$$\log_a(1) = 0$$
 et $\log_a(a) = 1$

Changement de base

Théorème (Changement de base)

Soient
$$x \in \mathbb{R}_+^*$$
 et $a, b \in \mathbb{R}_+^* \setminus \{1\}$.

$$\log_b(x) = \frac{\log_a(x)}{\log_a(b)}.$$

Deux bases particulières

Remarque

Il découle du théorème précédent que :

1 Pour a = 10:

$$\log_{10}(x) = \frac{\ln x}{\ln 10}$$

Il s'agit du **logarithme décimal**.

$$\log_e(x) = \frac{\ln x}{\ln e} = \frac{\ln x}{1} = \ln x$$

Il s'agit du **logarithme népérien**.

Deux valeurs importantes

Remarque

Il découle de la définition précédente que :

- $\ln(e) = 1$

Remarque

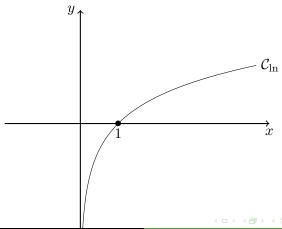
Il découle également de la définition de \ln que :

- $e^{\ln(x)} = x$

Fonctions exponentielles et logarithmes

Courbe représentative de ln

On a les équivalences $0 < x < 1 \iff \ln x < 0$, $x = 1 \iff \ln x > 0$ et $x > 1 \iff \ln x > 0$.



Propriétés algébriques de ln

Proposition

Soient $a,b \in \mathbb{R}_+^*$ et $n \in \mathbb{R}$. Nous avons :

Fonctions exponentielles et logarithmes

Variation de ln

Remarque

La fonction \ln est strictement croissante sur \mathbb{R}_+^* :

$$\forall x, y \in \mathbb{R}, \, x > y : \ln x > \ln y.$$

Signe de \log_a

Remarque

Selon la valeur de a, nous pourrons déterminer le signe de $\log_a x$:

- Si a>1, alors, \log_a a le même signe que \ln , sur les intervalles respectifs.
- Si 0 < a < 1, alors \log_a est de signe contraire à \ln , i.e. :

•
$$0 < x < 1 \iff \log_a x > 0$$

•
$$x = 1 \iff \log_a x = 0$$

•
$$x > 1 \iff \log_a x < 0$$

Résoudre une équation exponentielle

Exemple

Résoudre l'équation $5^{2x+1} = 6^{x-2}$

exercices

Exercice

- Mettre les équations suivantes sous forme logarithmiques $10^x = y 3$, $\exp(2t) = 3 x$.
- Trouver si possible les nombres : $\log_5(1)$, $\log_3(3)$ et $\log_5(125)$.

Exercice

Résoudre les équations suivantes :

- $3^{x+4} = 2^{1-3}.$
- $5^x + 125(5^{-x}) = 30$

Exposants rationnels et irrationnels

Nous allons maintenant nous intéresser à des fonctions de la forme $x\mapsto a^x$ où a>0 en considérant les cas $x\in\mathbb{Q}$ (rationnels) et $x\in\mathbb{R}\setminus\mathbb{Q}$ (irrationnels).

- Si $x \in \mathbb{Q}$, alors on peut écrire x = n/m avec $n \in \mathbb{Z}$ et $m \in \mathbb{N}^*$. Ainsi, $a^x = a^{n/m} = (\sqrt[m]{a})^n$.
- Si $x \in \mathbb{R} \setminus \mathbb{Q}$, on peut prendre une suite de nombres rationnels x_1, x_2, x_3, \ldots qui approchent x et définir a^x comme la valeur limite de $a^{x_1}, a^{x_2}, a^{x_3}, \ldots$ Par exemple, on peut approcher 2^{π} de la manière suivante :

x	2^x	x	2^x
3.1	8.574187700	3.1415	8.824411082
3.14	8.815240927	3.14159	8.824961595
3.141	8.821353305	π	8.824977827

Exponentielle de base a

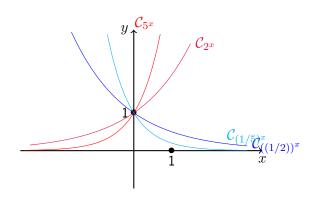
Définition (Exponentielle de base a)

Soit $a \in \mathbb{R}_+^*$, $a \neq 1$ (i.e. 0 < a < 1 ou a > 1).

La fonction $x \mapsto a^x$, définie sur \mathbb{R} , se nomme la fonction exponentielle de base \mathbf{a} .

Fonctions exponentielles et logarithmes

Courbes représentatives de 2^x , 5^x , $\left(\frac{1}{2}\right)^x$ et $\left(\frac{1}{5}\right)^x$



Variation des fonctions exponentielles

Au vu de la figure précédente, il y a deux types de fonctions exponentielles.

Terminologie	Définition	
Fonction exponentielle	$f: \mathbb{R} \to \mathbb{R}_+^*, \\ x \mapsto a^x$	
de base a	$x \mapsto a^x$	
$\mathbf{Si} \ a > 1$	Si $0 < a < 1$	
$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Fonctions exponentielles et logarithmes

Propriétés algébriques des fonctions exponentielles

Proposition (\bigstar)

Pour tous $a,b \in \mathbb{R}_+^* \setminus \{1\}$ et $x,y \in \mathbb{R}$, nous avons :

$$a^0 = 1$$

Propriétés algébriques des fonctions exponentielles

Proposition (★)

Pour tous $a, b \in \mathbb{R}_+^* \setminus \{1\}$ et $x, y \in \mathbb{R}$, nous avons :

$$a^0 = 1$$
 et $a^1 = a$

$$a^{x+y} = a^x a^y$$

$$a^{x-y} = \frac{a^x}{a^y}$$

$$a^{-x} = \frac{1}{a^x}$$

$$a^{xy} = (a^x)^y$$

$$a^x = a^y \iff x = y$$

$$a^x > 0$$

Exemple et autres propriétés des fonctions exponentielles

Exemple

Les propriétés ★ permettent de résoudre certaines équations exponentielles. Par exemple,

$$3^{5x-8} = 9^{x+2}$$

$$\Leftrightarrow 3^{5x-8} = 3^{2x+4} \quad (\bigstar 5)$$

$$\Leftrightarrow 5x-8 = 2x+4 \quad (\bigstar 7)$$

$$\Leftrightarrow x = 4$$

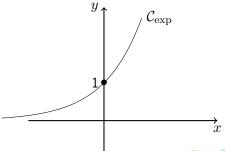
Fonction exponentielle naturelle

Le nombre d'Euler est donné par

$$e = 1 + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \cdots$$

= 2.718281828459045235360287471352662497757247...

L'exponentielle de base e est souvent notée $\exp(x) =: e^x$.



Propriétés algébriques de exp

Proposition

Pour tous $x, y \in \mathbb{R}$:

$$\exp(x+y) = \exp(x)\exp(y).$$

Corollaire

Pour tous $x,y \in \mathbb{R}$, nous avons :

$$\bullet \exp(-x) = \frac{1}{\exp(x)}$$

Fonctions exponentielles: exercices

Exercice

- $4^x \cdot (1/2)^{3-2x} = 8 \cdot (2^x)^2.$
- $9^{2x} \cdot (1/3)^{x+2} = 27 \cdot (3^x)^{-2}.$

Exercice

Trouver une base $a \in \mathbb{R}$ telle que $(2,5) \in \mathcal{C}_{a^x}$.

Fonctions exponentielles: corrections

Exercice

- $4^x \cdot (1/2)^{3-2x} = 8 \cdot (2^x)^2 \Leftrightarrow x = 3/2.$
- $9^{2x} \cdot (1/3)^{x+2} = 27 \cdot (3^x)^{-2} \Leftrightarrow x = 1.$

Exercice

Trouver une base $a \in \mathbb{R}$ telle que $(2,5) \in \mathcal{C}_{a^x}$. $\Leftrightarrow a = \sqrt{5}$.

Fonction logarithmique de base a: définition

Soit $a\in]0,+\infty[\setminus\{1\}]$ et soit $f:\mathbb{R}\to\mathbb{R},\ x\mapsto a^x$ la fonction exponentielle de base a. Comme $f(x)=f(y)\iff x=y$ ($\bigstar 7$) pour tout $x,y\in\mathbb{R}$ et que $f(\mathbb{R})=\mathbb{R}_+^*$, f a un inverse défini sur \mathbb{R}_+^* . Cette fonction est le logarithme de base a:

Définition (Fonction logarithmique de base a)

Soient $a\in]0,+\infty[\setminus\{1\},\ y\in\mathbb{R}$ et x>0. Le logarithme de base a de x est défini par

$$y = \log_a(x) \iff x = a^y$$
.

Deux relations importantes

Remarque

Il découle également de la définition de \log_a et de la réécriture de a^x que :

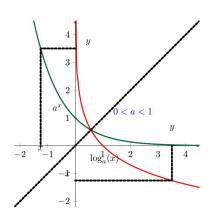
Deux relations importantes

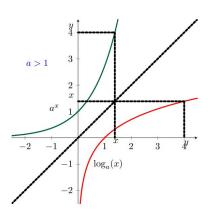
Remarque

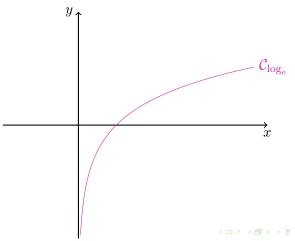
Il découle également de la définition de \log_a et de la réécriture de a^x que :

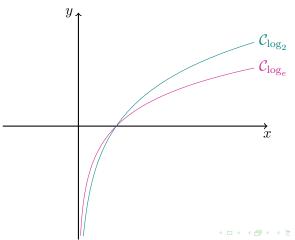
$$a^{\log_a(x)} = x$$

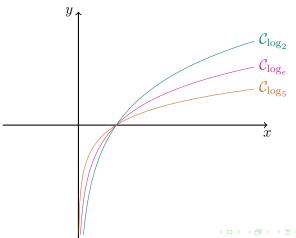
Fonction logarithmique de base a: définition





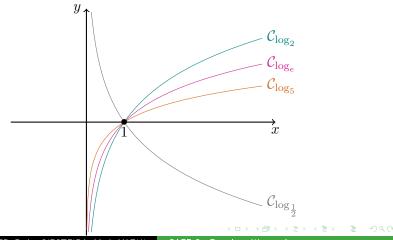






Quelques familles de fonctions

Fonctions exponentielles et logarithmes



Fonctions exponentielles et logarithmes

Variation de \log_a

Remarque

La variation de \log_a dépend de la valeur de a :

Variation de \log_a

Remarque

La variation de \log_a dépend de la valeur de a :

1 Si 0 < a < 1, alors \log_a est décroissante sur \mathbb{R} .

Variation de \log_a

Remarque

La variation de \log_a dépend de la valeur de a :

- Si 0 < a < 1, alors \log_a est décroissante sur \mathbb{R} .
- ② Si a > 1, alors \log_a est croissante sur \mathbb{R} .

Proposition

Proposition

1
$$\log_a(1) = 0$$
 et $\log_a(a) = 1$

Proposition

Proposition

Proposition

1
$$\log_a(1) = 0$$
 et $\log_a(a) = 1$

Proposition

Changement de base

Théorème (Changement de base)

Soient
$$x \in \mathbb{R}_+^*$$
 et $a, b \in \mathbb{R}_+^* \setminus \{1\}$.

$$\log_b(x) = \frac{\log_a(x)}{\log_a(b)}.$$

Deux bases particulières

Remarque

Il découle du théorème précédent que :

1 Pour a = 10:

$$\log_{10}(x) = \frac{\ln x}{\ln 10}$$

Il s'agit du **logarithme décimal**.

$$\log_e(x) = \frac{\ln x}{\ln e} = \frac{\ln x}{1} = \ln x$$

Il s'agit du **logarithme népérien**.

Deux valeurs importantes

Remarque

Il découle de la définition précédente que :

Deux valeurs importantes

Remarque

Il découle de la définition précédente que :

- $\ln(e) = 1$

Remarque

Il découle également de la définition de \ln que :

Deux valeurs importantes

Remarque

Il découle de la définition précédente que :

- $\ln(e) = 1$

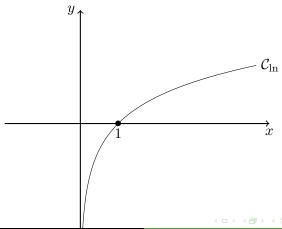
Remarque

Il découle également de la définition de ln que :

- $e^{\ln(x)} = x$

Courbe représentative de \ln

On a les équivalences $0 < x < 1 \iff \ln x < 0$, $x = 1 \iff \ln x > 0$ et $x > 1 \iff \ln x > 0$.



Proposition

Proposition

$$\ln\left(\frac{1}{b}\right) = -\ln b$$

Proposition

Proposition

Proposition

Variation de ln

Remarque

La fonction \ln est strictement croissante sur \mathbb{R}_+^* :

$$\forall x, y \in \mathbb{R}, \, x > y : \ln x > \ln y.$$

Variation de ln

Remarque

La fonction \ln est strictement croissante sur \mathbb{R}_+^* :

$$\forall x, y \in \mathbb{R}, \, x > y : \ln x > \ln y.$$

Remarque

La fonction \ln croît plus lentement que x^n , pour tout $n \in \mathbb{N}$.

Résoudre $\ln x = a$

Remarque

Afin de résoudre une équation de la forme $\ln x = a$, où $a \in \mathbb{R}_+^*$, nous pouvons procéder de la sorte :

$$\ln x = a$$

Résoudre $\ln x = a$

Remarque

Afin de résoudre une équation de la forme $\ln x = a$, où $a \in \mathbb{R}_+^*$, nous pouvons procéder de la sorte :

$$\ln x = a \iff e^{\ln x} = e^a$$

Résoudre $\ln x = a$

Remarque

Afin de résoudre une équation de la forme $\ln x = a$, où $a \in \mathbb{R}_+^*$, nous pouvons procéder de la sorte :

$$\ln x = a \iff e^{\ln x} = e^a$$
$$\iff x = e^a$$

Résoudre $\ln x = a$

Remarque

Afin de résoudre une équation de la forme $\ln x = a$, où $a \in \mathbb{R}_+^*$, nous pouvons procéder de la sorte :

$$\ln x = a \iff e^{\ln x} = e^a$$
$$\iff x = e^a$$

Remarque (Équation $e^x = a$)

En l'occurrence, pour résoudre une équation de la forme $e^x=a$, nous procédons de manière analogue, en prenant \ln des deux côtés.

Fonctions exponentielles et logarithmes

Signe de \log_a

Remarque

Selon la valeur de a, nous pourrons déterminer le signe de $\log_a x$:

Remarque

Selon la valeur de a, nous pourrons déterminer le signe de $\log_a x$:

• Si a>1, alors, \log_a a le même signe que \ln , sur les intervalles respectifs.

Remarque

Selon la valeur de a, nous pourrons déterminer le signe de $\log_a x$:

- Si a > 1, alors, \log_a a le même signe que \ln , sur les intervalles respectifs.
- Si 0 < a < 1, alors \log_a est de signe contraire à \ln , i.e. :

Remarque

Selon la valeur de a, nous pourrons déterminer le signe de $\log_a x$:

- Si a>1, alors, \log_a a le même signe que \ln , sur les intervalles respectifs.
- Si 0 < a < 1, alors \log_a est de signe contraire à \ln , i.e. :
 - $0 < x < 1 \iff \log_a x > 0$

Remarque

Selon la valeur de a, nous pourrons déterminer le signe de $\log_a x$:

- Si a>1, alors, \log_a a le même signe que \ln , sur les intervalles respectifs.
- Si 0 < a < 1, alors \log_a est de signe contraire à \ln , i.e. :
 - $0 < x < 1 \iff \log_a x > 0$
 - $x = 1 \iff \log_a x = 0$

Remarque

Selon la valeur de a, nous pourrons déterminer le signe de $\log_a x$:

- Si a>1, alors, \log_a a le même signe que \ln , sur les intervalles respectifs.
- Si 0 < a < 1, alors \log_a est de signe contraire à \ln , i.e. :

•
$$0 < x < 1 \iff \log_a x > 0$$

•
$$x = 1 \iff \log_a x = 0$$

•
$$x > 1 \iff \log_a x < 0$$

Résoudre $\log_a x = b$

Remarque

$$\log_a x = b$$

Résoudre $\log_a x = b$

Remarque

$$\log_a x = b \iff a^{\log_a x} = a^b$$

Résoudre $\log_a x = b$

Remarque

$$\log_a x = b \iff a^{\log_a x} = a^b$$
$$\iff x = a^b$$

Résoudre $\log_a x = b$

Remarque

Afin de résoudre une équation de la forme $\log_a x = b$, nous pouvons procéder de la sorte :

$$\log_a x = b \iff a^{\log_a x} = a^b$$
$$\iff x = a^b$$

Remarque (Équation $a^x = b$)

En l'occurrence, pour résoudre une équation de la forme $a^x=b$, nous procédons de manière analogue, en prenant \log_a des deux côtés.

Résoudre $\log_a x = b$

Remarque

$$\log_a x = b$$

Résoudre $\log_a x = b$

Remarque

$$\log_a x = b \iff a^{\log_a x} = a^b$$

Résoudre $\log_a x = b$

Remarque

$$\log_a x = b \iff a^{\log_a x} = a^b$$
$$\iff x = a^b$$

Résoudre $\log_a x = b$

Remarque

Afin de résoudre une équation de la forme $\log_a x = b$, nous pouvons procéder de la sorte :

$$\log_a x = b \iff a^{\log_a x} = a^b$$
$$\iff x = a^b$$

Remarque (Équation $a^x = b$)

En l'occurrence, pour résoudre une équation de la forme $a^x=b$, nous procédons de manière analogue, en prenant \log_a des deux côtés.

exercices

Exercice

- Mettre les équations suivantes sous forme logarithmiques $10^x = y 3$, $\exp(2t) = 3 x$.
- Trouver si possible les nombres : $\log_5(1)$, $\log_3(3)$ et $\log_5(125)$.

Exercice

Résoudre les équations suivantes :

- $3^{x+4} = 2^{1-3}.$
- $5^x + 125(5^{-x}) = 30$

Sommaire

- Quelques familles de fonctions
 - Fonctions exponentielles et logarithmes
 - Exposants rationnels et irrationnels
 - ullet Exponentielle de base a
 - Variation des fonctions exponentielles
 - Propriétés algébriques des fonctions exponentielles
 - Fonction exponentielle naturelle
 - ullet Fonction logarithmique de base a: définition
 - Changement de base
 - Logarithme népérien
 - Exposants rationnels et irrationnels
 - ullet Exponentielle de base a
 - Variation des fonctions exponentielles
 - Propriétés algébriques des fonctions exponentielles
 - Fonction exponentielle naturelle
 - ullet Fonction logarithmique de base a: définition
 - Changement de base
 - Logarithme népérien

Définition

Une fonction réelle f est **polynomiale** de **degré** n si elle s'écrit de la forme suivante :

$$f(x) = a_n x^n + \dots + a_1 x + a_0.$$

où
$$a_0,...,a_n \in \mathbb{R}$$
 et $a_n \neq 0$.

Définition

Une fonction réelle f est **polynomiale** de **degré** n si elle s'écrit de la forme suivante :

$$f(x) = a_n x^n + \dots + a_1 x + a_0.$$

où $a_0,...,a_n \in \mathbb{R}$ et $a_n \neq 0$.

Terminologie

• n est le **degré**, noté deg.

Définition

Une fonction réelle f est **polynomiale** de **degré** n si elle s'écrit de la forme suivante :

$$f(x) = a_n x^n + \dots + a_1 x + a_0.$$

où $a_0,...,a_n \in \mathbb{R}$ et $a_n \neq 0$.

Terminologie

- n est le **degré**, noté deg.
- $a_0, ..., a_n$ sont les coefficients

Définition

Une fonction réelle f est **polynomiale** de **degré** n si elle s'écrit de la forme suivante :

$$f(x) = a_n x^n + \dots + a_1 x + a_0.$$

où $a_0,...,a_n \in \mathbb{R}$ et $a_n \neq 0$.

Terminologie

- n est le **degré**, noté deg.
- $a_0, ..., a_n$ sont les coefficients
- $a_n x^n$ est le terme dominant

Définition

Une fonction réelle f est **polynomiale** de **degré** n si elle s'écrit de la forme suivante :

$$f(x) = a_n x^n + \dots + a_1 x + a_0.$$

où $a_0,...,a_n \in \mathbb{R}$ et $a_n \neq 0$.

Terminologie

- n est le **degré**, noté deg.
- $a_0, ..., a_n$ sont les **coefficients**
- $a_n x^n$ est le **terme dominant**
- a_0 est le terme constant.

Remarques

Remarques

Remarques

- 2 Les opérations définies sur les fonctions sont également définies sur les polynômes

Remarques

- 2 Les opérations définies sur les fonctions sont également définies sur les polynômes
- $oldsymbol{0}$ f possède au plus n zéros et n-1 extrema.

Division euclidienne

Théorème

Soient f(x) et g(x) deux polynômes de degré n et m respectivement, avec $n \ge m$.

Alors, il existe d'uniques polynômes q(x) de degré n-m et r(x) de degré $0 \le d < m$ tels que $f(x) = g(x) \cdot q(x) + r(x)$.

Quelques exemples

Exemples

$$4x^2 + 2 = (x+3) \cdot (4x-12) + 38$$

Quelques exemples

Exemples

$$4x^2 + 2 = (x+3) \cdot (4x-12) + 38$$

2
$$x^3 - 4x + 9 = (2x^2 + 5) \cdot \left(\frac{1}{2}x\right) - \frac{13}{2}x + 9$$

Quelques exemples

Exemples

$$4x^2 + 2 = (x+3) \cdot (4x-12) + 38$$

$$3 x^2 - 5x + 6 = (x - 2) \cdot (x - 3) + 0$$

Zéro et division euclidienne

Théorème

Soit f une fonction polynomiale et soit $c \in \mathbb{R}$.

$$(x-c)$$
 divise $f \iff f(c)=0$.

Zéro et division euclidienne

Théorème

Soit f une fonction polynomiale et soit $c \in \mathbb{R}$.

$$(x-c)$$
 divise $f \iff f(c)=0$.

Donc, si c est un zéro de f, nous pouvons écrire $f(x)=(x-c)\cdot Q(x)$, où Q est le quotient de la division euclidienne de f par x-c. En particulier, $\deg Q=\deg f-1$.

Multiplicité d'un zéro

Définition

Si, dans la forme factorisée d'une fonction polynomiale, (x-c) apparaît m fois, alors c est un zéro de **multiplicité** m.

Multiplicité d'un zéro

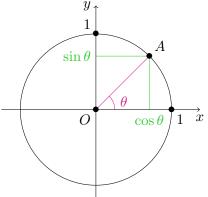
Définition

Si, dans la forme factorisée d'une fonction polynomiale, (x-c) apparaît m fois, alors c est un zéro de **multiplicité** m.

Il s'en suit que, si c est un zéro de f de multiplicité m, nous pouvons écrire $f(x)=(x-c)^m\cdot Q(x)$, où Q est le quotient de la division euclidienne de f par $(x-c)^m$. En l'occurrence, $\deg Q=\deg f-m$.

Cercle trigonométrique

Nous nous plaçons dans le cercle trigonométrique, à savoir dans le cercle centré en 0 de rayon 1, et considérons un point A sur le cercle.



Cosinus et sinus

Sur la figure précédente, l'abscisse de A est le **cosinus** de θ et l'ordonnée de A est le **sinus** de θ .

Cosinus et sinus

Sur la figure précédente, l'abscisse de A est le **cosinus** de θ et l'ordonnée de A est le **sinus** de θ .

Remarques

Pour tout réel θ :

$$-1 \le \cos \theta \le 1$$

Cosinus et sinus

Sur la figure précédente, l'abscisse de A est le **cosinus** de θ et l'ordonnée de A est le **sinus** de θ .

Remarques

Pour tout réel θ :

$$-1 \le \cos \theta \le 1$$

$$-1 \le \sin \theta \le 1$$

Cosinus et sinus

Sur la figure précédente, l'abscisse de A est le cosinus de θ et l'ordonnée de A est le sinus de θ .

Remarques

Pour tout réel θ :

$$0$$
 $-1 \le \cos \theta \le 1$

$$-1 \le \sin \theta \le 1$$

Fonctions cosinus et sinus

Définitions

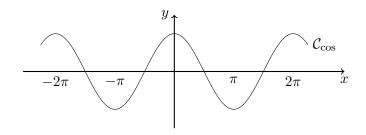
① La fonction cosinus est la fonction définie sur \mathbb{R} qui, à tout réel x, associe $\cos{(x)}: x \mapsto \cos{(x)}$.

Fonctions cosinus et sinus

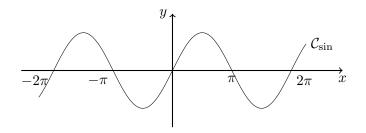
Définitions

- **1** La fonction cosinus est la fonction définie sur \mathbb{R} qui, à tout réel x, associe $\cos(x): x \mapsto \cos(x)$.
- ② La fonction sinus est la fonction définie sur \mathbb{R} qui, à tout réel x, associe $\sin(x): x \mapsto \sin(x)$.

Représentation graphique de $\cos(x)$



Représentation graphique de $\sin(x)$



Propriétés algébriques de \cos et \sin

Proposition

Proposition

Proposition

Proposition

Proposition

Proposition

Proposition

Proposition

$$3 \sin\left(\frac{\pi}{2} - x\right) = \cos\left(x\right)$$

Proposition

Pour tous $a, b \in \mathbb{R}$:

Proposition

Pour tous $a,b \in \mathbb{R}$:

Proposition

Pour tous $a, b \in \mathbb{R}$:

Proposition

Pour tous $a, b \in \mathbb{R}$:

Parité

Remarque

• La fonction cosinus est paire : $\cos(-x) = \cos(x)$, $\forall x \in \mathbb{R}$.

Parité

Remarque

- La fonction cosinus est paire : $\cos(-x) = \cos(x)$, $\forall x \in \mathbb{R}$.
- La fonction sinus est impaire : $\sin(-x) = -\sin(x)$, $\forall x \in \mathbb{R}$.

CAFE-S - Fonctions élémentaires

Quelques familles de fonctions

Fonctions trigonométriques

Périodicité

Remarque

Les fonctions cosinus et sinus sont 2π -périodiques :

Périodicité

Remarque

Les fonctions cosinus et sinus sont 2π -périodiques :

- $\cos(x+2\pi) = \cos(x)$, pour tout $x \in \mathbb{R}$.
- $\sin(x+2\pi) = \sin(x)$, pour tout $x \in \mathbb{R}$.

Équations avec cosinus et sinus

Proposition

Soit $a \in \mathbb{R}$ fixé.

1 Les solutions de l'équation $\cos(x) = \cos(a)$ sont de la forme :

$$x=a+2k\pi$$
 ou $x=-a+2k\pi,\ k\in\mathbb{Z}.$

Équations avec cosinus et sinus

Proposition

Soit $a \in \mathbb{R}$ fixé.

① Les solutions de l'équation $\cos{(x)} = \cos{(a)}$ sont de la forme :

$$x=a+2k\pi \text{ ou } x=-a+2k\pi,\ k\in\mathbb{Z}.$$

2 Les solutions de l'équation $\sin(x) = \sin(a)$ sont de la forme :

$$x=a+2k\pi$$
 ou $x=(\pi-a)+2k\pi,\ k\in\mathbb{Z}.$

Exercices II

Exercice

Résoudre les équations suivantes :

$$x^3 + 2x^2 - x - 2 = 0$$

$$2^x - 16 \cdot 2^{3x-8} = 0$$

$$3^{5x-4} = 27^{4x^2}$$

$$6^{x-2} = 52$$

Correction II