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Learning goals

● Understand why and when linear optimization can be useful for 
energy system modeling

● Be able to describe the structure of an optimization model (sets, 
parameters, variables, constraints, objective)

● Be able to formulate scalable optimization models

● Gain intuition on how the price on CO2 emissions has the 
potential to impact the cost-effectiveness of the energy transition 
(assignment)
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Part I:
Purpose and applications 

of energy optimization 
models

2
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Optimization

• Maximize or minimize an objective function 
• Cost, emissions, welfare, etc

• By identifying the optimal values of the variables that the objective 
function depends on 
• Power plant operation, new installed capacity, power flows, etc

• Subject to certain system constraints 
• Supply equals demand, cannot produce 2GW with a 1GW power plant, etc

3



FACULTÉ DES SCIENCES - MUSE

Purpose and applications

• Linear optimization models are useful to model a broad variety of 
energy systems

• The optimization allows to approximate perfect (electricity) 
markets

• The design of the model is determined by both the system we want 
to represent and the questions we want to answer
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Market theory

• Markets minimize costs to cover demand (perfect markets)

• Optimization can be used to approximate market behavior

• Answer questions like: 
• How does the market react if we change certain parameters?

• Estimate future electricity prices

• Analyze drivers 

• Controlled parameter changes to understand market behavior
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Market price set by supply and demand
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All models are wrong, but some are useful!

• Known limits to market optimization method, but still very useful!

• We can explore relative changes, sensitivity to study trends and 
counterfactuals.

• This is different from prediction.

• Answer questions like: 
• How does the market react if we change certain parameters?

• Estimate future electricity prices

• Analyze drivers 

• Controlled parameter changes to understand market behavior

8
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Some types of models
• Dispatch vs. unit commitment

• Assignment: typical simple dispatch model

9
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Some types of models

• Temporal resolution: aggregated year, hourly, representative 
weeks/days, etc
• Assignment: full year, season 

• Energy system operation only vs. capacity expansion/retirement
• Assignment: integrated operation/capacity investment

• Greenfield (optimize full system configuration) vs. brownfield 
(optimize capacity starting from existing system)
• Assignment: brownfield with scenarios

10
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• Approximate the year 
through 4 representative 
weeks

• Assume no pre-existing 
storage

• How does the optimal 
system composition and 
costs change if storage is 
added?

Examples from research: adding grid level 
storage in Texas

11

The value of energy storage in decarbonizing the 
electricity sector, de Sisternes et al.
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Examples from research: adding grid level 
storage in Texas
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The value of energy storage in decarbonizing the 
electricity sector, de Sisternes et al.
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Examples from research:
Market value of variable 
renewables
• Dispatch model minimizing cost for each hour 

of a single year; multiple western European 
countries

• How does the value/revenue of wind and solar 
change if the capacities are increased?
• At 30% penetration, electricity from wind is worth 

half of that from a constant source of electricity.

13

The market value of variable renewables, The effect of solar wind 
power variability on their relative price, Lion Hirth



FACULTÉ DES SCIENCES - MUSE

Examples from research:
Future role of Switzerland

14

• Detailed Swiss market model, all hydro power plants

Linking Europe - The Role of the Swiss Electricity 
Transmission Grid until 2050, Schlecht and Weigt
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Part II:
Important concepts

15
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Fixed costs, variable costs

• Fixed Costs (FC)
• Constant costs over time

• Include annualised CAPEX costs

• Variable Costs (VC)
• Variable in time

• For example price of gas for power plant

16
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Capacity factor
• Ratio of produced energy and maximum energy produced at full nominal capacity

• What causes electricity generators to have a capacity factor < 1?

17

Example: 2 MW capacity producing at varying output for 24 hours

• Daily CF:
22.6MWh

25.4MWh + 22.6MWh
= 47.2%

• Hourly CF (hour 24):
1.2MWh

0.8MWh + 1.2MWh
= 60%
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Full load hours (FLH)

• FLH = Capacity factor * total duration 

• How long would we need to operate at full power to produce the respective amount of 
energy?

• Units: hours or (produced MWh)/(MW installed capacity)

Example Daily FLH:
47.2% ∙ 24 h/day = 11.3 hours/day
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The marginal generator

• As energy demand varies, different energy generators are activated or 
disactivated.

• We assume the generators are activated in order from the least 
expensive to the most expensive

• This is called the merit order

• The marginal generator is the most expensive generator that needs 
to come online to meet the demand

• It sets the price for everyone

19
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The merit order effect

• The sorted variable costs of power plants form the supply cost curve

• Short term variable costs of power plants determine the power price 
for a certain demand

• The marginal generator sets the price
• Example: wind and solar power with low short term variable costs reduce 

electricity selling prices

20
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Shadow prices

• “Shadow price” refers to the calculated price of something that is not directly 
traded in a real marketplace.

• In the energy system, the ‘ideal’ or ‘optimal’ price of electricity at a given 
time is the price of the marginal generator
• How much does the electricity price (CHF/MW) change if the demand is increased

• In our energy system model, we set the market electricity price equal to the 
shadow price

• The real energy prices may be different

• e.g. on the European Energy Exchange EEX

21
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Shadow prices example

• 1 MW demand increase in summer 
leads to production increase from 
the cheapest available generator

• How to calculate the shadow price? 
• In this case, only option in short term 

is gas.

• Therefore, the variable cost of gas 
sets overall electricity price.

22
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Effect of low cost solar and wind

23

Adapted from
http://dx.doi.org/10.1016/j.eneco.2014.04.020

• More wind and solar power with zero-variable cost shift the supply curve to the right
• The electricity price decreases during the hours of wind and solar power production

• The revenue of wind and solar plants shrinks
• The marginal generator changes (natural gas & coal)
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Revenue

With the power production 𝑝𝑡 and the electricity prices (shadow 
prices) 𝜋𝑒𝑙𝑡 we can calculate the revenue of any plant in the system:

Revenue [CHF] = σ𝑡(𝑝𝑡 𝑀𝑊 ∗ 𝑤 ℎ ∗ 𝜋𝑒𝑙𝑡 𝐶𝐻𝐹/𝑀𝑊ℎ )

With w[h] the time slot weight (number of hours in time slot, e.g. 
2190 hours in a season)

26
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Cost is equal to revenue

• In linear optimization models, the total revenue of optimized capacity 
is equal to the cost, therefore:
• Optimized components have net value equal zero

• Optimized components don’t produce profits or losses

27
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Example: Solar power

• Higher capacity of the same solar 
resource reduces the electricity prices at 
noon

• The average revenue of solar power is 
reduced if more solar power is added to 
the system

• When value does not equal cost:

• Profit from PV means we can lower 
system cost by adding more PV

• PV costs exceeding revenue means 
we have installed too much PV

28
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Example: optimum 
capacities

29

• Wind energy cost lower than gas 
LCOEwind = 90CHF/MWh

• Can replace gas power, but not 
cheaper coal power

• How much wind power would we 
install?

• What would the total cost be? 
• The total CAPEX and revenue of 

wind power? 
• What changes if the wind capacity 

is not optimal?

Pgas

=
10

MW

πel=100

vcgas= 100 CHF/MWh

vccoal = 40 CHF/MWh
Pcoal

=
10

MW

Pgas

=
4 MW

Pwind

=
6

MW

πel=100

Pcoal

=
10

MW

Pwind

=
10

MW

πel=90

Pcoal

=
10

MW

Pcoal

=
6

MW

Pwind

=
14

MW

πel=40Electricity price

Total cost (CHF/h) 100*10 + 
40*10 = 1400

1340 1300
optimum!

1500

Wind revenue (CHF/h) - 100*6 90*10 40*14

Wind cost (CHF/h) - 90*6 90*10 90*14

Revenue - Value - 60 0 -700
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Part III:
How to build linear 
energy optimization 

models

30
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Linear optimization models

• Linear optimization models consist of
• Sets

• Parameters

• Variables

• Constraints

• The objective function

• Mathematically, linear optimization models can be expressed as a 
single matrix

31
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L1 L2

P1

c1

P2

c2

p1 p2

T=0.5 MW

P1= 4 MW
c1= CHF20/MWh

P2= 3 MW
c2= CHF30/MWh

L1= 1 MW L2= 2 MW

Feasible region

𝑝1 ≤ 𝑃1 = 4 MW

𝑝2 ≤ 𝑃2 = 3 MW
Power plant capacity 

constraints

𝑝1 ≤ 𝐿1+T= 1.5 MW

𝑝2 ≤ 𝐿2+T= 2.5 MW
Transmission 

constraints

Demand constraint

p2

p1

0 1 2 3

0

1

2

3

4

Optimum

Power plant 
capacity constraints

Transmission 
constraints

Example: Graphical optimization of a power 
system

Aim: find values of p1 and p2 such that the total 
cost is minimized

Demand constraint   𝑝1 + 𝑝2 ≥ 𝐿1+𝐿2 = 3 MW

Objective function   20𝑝1 + 30𝑝2
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Canonical matrix form (linear program):

minimize 𝑐1 𝑐2
𝑝1
𝑝2

with 

1 0
0
1
0

1
0
1

−1 −1

𝑝1
𝑝2

≤

4
3
1.5
2.5
−3

minimize 𝒄T𝒙

subject to 𝐴𝒙 ≤ 𝒃

General linear optimization model

𝑝1 ≤ 𝑃1 = 4 MW

𝑝2 ≤ 𝑃2 = 3 MW
Power plant capacity 

constraints

𝑝1 ≤ 𝐿1+T= 1.5 MW

𝑝2 ≤ 𝐿2+T= 2.5 MW
Transmission 

constraints

𝑝1 + 𝑝2 ≥ 𝐿1+𝐿2 = 3 MWDemand constraint

20𝑝1 + 30𝑝2Objective function
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Structure of an optimization model

Sets (indices)
In this case: Regions i {1,2}

Parameters (input data); in this case:
• Capacity (Pi)
• Variable cost (ci)
• Transmission capacity (T): no index i
• Load Li

Variables (what’s being optimized)
In this case: power production pi

Objective function (what’s being minimized/maximized):
In this case: minimize total cost

Constraints: Equations/inequalities 
limiting the variable choice 

34
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In the exercise: Pyomo

• Pyomo is a python package for building optimisation models

• Can be used in many different contexts

• We write a special Python description of the problem

• Uses a solver internally the performs the optimisation (e.g. CPLEX)

• http://www.pyomo.org/

35
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Structure of an optimization model: 
Sets

• What do the parameter/variables/constraints 
depend on?
• Nodes (countries, regions, substations, buildings…)

• Power plants (e.g. installed capacity)

• Hour/time slot (e.g. demand parameter defined for each 
hour/time slot, power plant production variable defined 
for each hour/time slot)

• Fuels (e.g. fuel price defined for each fuel, emission 
intensity defined for each fuel)

• Etc..

(1) 
Switzerland

p1 p2 p3

p4 p5

(2) 
Germany

p6 p7 p8

p9 p10

Example of node
Sets and power 
plant sets

36
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Structure of an optimization model: 
Sets

• Power plants and 4 seasons
• Sets are attributes (properties) of the model object m
• Sets are “lists of names”

m = po.ConcreteModel()

m.seasons = po.Set(initialize=['0_spring', '1_summer’,…])

m.power_plants = po.Set(initialize=['solar','gas‘, ‘wind’,…])

• Multiplying sets gives “all combinations” (all power plants during all 
seasons) :

m.seasons * m.power_plants

• subset, e.g. wind and solar:
m.wind_solar= po.Set(within=m.power_plants, 

initialize=['solar',‘wind'])
37
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Structure of an optimization model: 
Parameters

38

• Parameters are input data
• Costs

• Capacities of power plants

• Capacity factors

• Transmission capacities

• Demand

• Efficiency

• Time step duration
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Structure of an optimization model: 
Parameters

• Just like sets, parameters are attributes of the model object m
• e.g. capacity factors m.cf defined for all VRE plants and all seasons (m.power_plants * 

m.seasons)

m.cf = po.Param(m.power_plants * m.seasons,

initialize={(‘wind‘, '0_spring‘): 0.175, 

(‘wind‘, '1_summer‘): 0.131, … etc.})

(‘solar‘, ‘1_spring‘): 0.09, … etc.})

• e.g. power plant capacity defined for all power plants
m.capacity_old = po.Param(m.power_plants,

initialize={‘wind’: 20000, ‘solar’: 15000})

• e.g. time slot weight/duration defined for all time slots (seasons)
m.season_weight = po.Param(m.seasons, initialize={'0_spring‘: 2190})

39
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Structure of an optimization model:
Variables

40

• E.g. produced power, installed capacity, stored energy, …

• Aim: find variable values to minimize the total cost/minimize 
emissions/maximize profit, etc.

• Variables have 
• Bounds (-∞, ∞), (0,+∞), etc. 

• Domains (real numbers, binaries, integer values)
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Structure of an optimization model: 
Variables

In the exercise
• Power production each season + new capacity for some plants

• All variables are positive (0,+∞) and real numbers (default)

m.pwr = po.Var(m.power_plants * m.seasons,

bounds=(0, None))

41
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Structure of an optimization model: 
Constraints

• Need to set constraints on the possible solutions

• Defined as:
• Equality constraints (e.g. energy balance)

• Inequality constraints (e.g. power generated less than maximum power 
capacity)

42
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Structure of an optimization model: 
Constraints

• Energy balance constraints: for each time step, the supply is greater or equal 
the demand for each time step t (e.g. season)

pnuclear,t + pgas,t + phydro,t + pcoal,t + psolar,t >= Dt

• Function demand_constraint_equation is called for each season and 
returns an inequality “supply >= demand”

def demand_constraint_equation(m, season):
return (sum(m.pwr[plant, season] for plant in m.power_plants) >=

m.demand[season])

• Constraint “for each season”
m.demand_constraint = po.Constraint(m.seasons,

rule=demand_constraint_equation)

43
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def demand_constraint_equation(m, season):

return (sum(m.pwr[plant, season] for plant in m.power_plants) >=          

m.demand[season])

m.demand_constraint = po.Constraint(m.seasons, 

rule=demand_constraint_equation)

Constraints

“for each season” expressed through the 
model sets previously defined

Constraints constructed 
for each single season 
(4 seasons in total, 
therefore 4 single 
constraints in total)

Sum of power production of all power plants 
during a given season. 

note: sum of all power plants is always 
sum(something[plant] for plant in 

m.power_plants)

Pass the ‘model’ to the 
function so we can 
access the variables

44
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Constraints: Variable new capacity

def capacity_constraint_equation(m, plant, season):

if plant in m.new_power_plants:

return m.pwr[plant, season] <= m.cap[plant] + m.cap_new[plant]

else:

return m.pwr[plant, season] <= m.cap[plant]

m.capacity_constraint = po.Constraint(m.power_plants * m.seasons,

rule=capacity_constraint_equation)

What if we allow for new capacity investments for a set of 
power plants m.new_power_plants?

Variable m.cap_new for new plants

Variable only exists for 
new power plants

45

Parameter exists 
for all plants
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Constraints: Profile constraint

46

• For each time slot and each wind or solar plant, the produced power must be 
equal the installed capacity times the capacity factor cfplant,t:

𝑝plant,𝑡 = cfplant,𝑡 ∙ 𝑃plant for each variable renewable energy plant

• The capacity factor follows from the resource availability 
• e.g. zero at night for solar, wind produces more power in winter as compared to 

summer



FACULTÉ DES SCIENCES - MUSE

Structure of an optimization model: 
Objective function

• Must produce a single value

• Examples: Total cost (minimize), emissions (minimize), 
revenue/profit (maximize)

• Total cost: 
• Fuel cost of all power plants

• Fixed and variable OPEX, CAPEX

• Others costs like ramping costs, start-up costs

47
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Structure of an optimization model: 
Objective function
Example: Yearly cost from Variable Cost (VC) and Fixed Costs (FC)

VCfuel,plant,𝑡 =
vcfuel plant + 𝑖CO2,fuel plant ∙ 𝜋CO2

𝜂fuel
∙ 𝑝plant,𝑡 ∙ 𝑤𝑡

FCplant = (fcOPEX + 𝛼 ∙ fcCAPEX) ∙ 𝑃i

Total Cost = ෍

plant

෍

𝑡

VCfuel,plant,𝑡 + ෍

plant

FCplant

48

𝑣𝑐
𝐸𝑈𝑅

𝑀𝑊ℎ𝑓𝑢𝑒𝑙

𝑖𝐶𝑂2
𝑡𝑒𝑞𝐶𝑂2

𝑀𝑊ℎ𝑓𝑢𝑒𝑙

𝜋𝐶𝑂2
𝐸𝑈𝑅

𝑡𝑒𝑞𝐶𝑂2

𝜂fuel[
𝑀𝑊ℎ𝑒𝑙
𝑀𝑊ℎ𝑓𝑢𝑒𝑙

]

𝑝 𝑀𝑊𝑒𝑙

𝑤
ℎ

𝑦𝑒𝑎𝑟
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TOT_VAR = sum(m.season_weight[season] * m.pwr[plant, season]
* (m.fuel_cost[plant] + m.price_co2 * m.co2_intensity[plant])
/ m.eff[plant]
for plant in m.power_plants for season in m.seasons)

TOT_FIX = sum(m.cap_new[plant] * m.fixed_cost[plant] 
for plant in m.new_power_plants)

m.obj = po.Objective(expr=TOT_VAR + TOT_FIX, sense=po.minimize)

Objective function: Formulation in Pyomo

Define whether we 
minimize or maximize

Total cost based on 
components defined 
above

Note: double sum (all 
seasons, all power plants)

49
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The full example in Pyomo

def transmission_constraints_rule(m, region):

return m.power[region] <= m.demand[region] + m.transmission_cap

m.transmission_constraints = po.Constraint(m.regions, rule=transmission_constraints_rule)

def demand_constraint_rule(m):

return sum(m.power[region] for region in m.regions) 

>= sum(m.demand[region] for region in m.regions)

m.demand_constraint = po.Constraint(rule=demand_constraint_rule)

def capacity_constraint_rule(m, region):

return m.power[region] <= m.capacity[region]

m.capacity_constraint = po.Constraint(m.regions, rule=capacity_constraint_rule)

def objective_rule(m):

return sum(m.power[region] * m.cost[region] for region in m.regions)

m.objective = po.Objective(rule=objective_rule, sense=po.minimize)

solver.solve(m, tee=True)

m.power = po.Var(m.regions, bounds=(0,None))

m.capacity = po.Param(m.regions, initialize={'one': 4, 'two': 3})

m.demand = po.Param(m.regions, initialize={'one': 1, 'two': 2})

m.cost = po.Param(m.regions, initialize={'one': 20, 'two': 30})

m.transmission_cap = po.Param(initialize=0.5)

m.regions = po.Set(initialize=['one', 'two']) Sets

Variables

Parameters

Constraint

Objective

50
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Part IV:
Assignment

51
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Purpose

• Learn how to build a simple (but scalable) energy optimization model to 
represent the national electricity of a region

• How does the CO2 price affect the optimal system composition?

• What happens to the wind revenue if we install more and more wind capacity?

• Analyze the effect on shadow prices/electricity prices
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Purpose

Nuclear

Coal

Gas

Wind

Solar PV

New solar PV

New wind

New gas power plants

Optimize 
operation 

and
capacity

Optimize 
operation

Cover demand at 
lowest cost



FACULTÉ DES SCIENCES - MUSE

Classification of the model

• Optimization of operation and capacity expansion

• Fully deterministic (perfect foresight all seasons)

• Dispatch model with aggregated power plants (e.g. all nuclear power plants 
optimized as one)

• Suited to analyze the impact of policy measures on drivers/optimal system 
composition

System:

• Single year (annualized CAPEX), four time slots (average seasons: spring, summer, 
fall, winter)

• Cost minimize the operation of 5 plants and invest in 3 new plant types

• Based on the German power system

54
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Method I

• The exercise model is formulated in Pyomo (Python optimization module)

• We use Jupyter Notebooks (similar to Monte Carlo Simulation and Techno-
economic analysis)

• The exercise is not about programming Python but formulating optimization 
models

• We use Python/Pyomo as a modelling environment; therefore only few 
commands and concepts are necessary, the rest can be ignored/will be 
provided to you

55
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Method II

• The analysis will be performed in Excel

• The most advanced Excel function you need to perform the analysis and to 
reshape the data is “SUMIFS” (“SOMME.SI.ENS in French); please get 
yourself familiar with it (see the SUMIFS example sheet in the Excel report 
template file)

• Of course you can use any other Excel approach for the analysis (pivot 
tables, INDEX(…, MATCH(…)), array formulas, etc.)

• Use Word template for the report

• Detailed instructions and notes are included with the Jupyter Notebook. 
Please make sure to read them.

56
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Questions?

57
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